HOMEWORK 10 - MATH 140 DUE DATE: Monday, November 21 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Suppose that C is the right angle of a right triangle $\triangle ABC$. Using the following information, solve the triangle:
 - (a) If $b = 4, \beta = 10^{\circ}$, find a, c and α .
 - (b) If a = 2, b = 8, find c, α and β .
- 2. To measure the height of a building , two sightings are taken a distance of 50 feet apart. If the first angle of elevation is 40° and the second is 32° , what is the height of the building?
- 3. Solve each of the following triangles. Be alert in case any of the data result in no triangles or more than one triangle:
 - (a) If $\beta = 20^{\circ}, \gamma = 70^{\circ}$ and a = 1, find α, b and c
 - (b) If b = 4, c = 3 and $\beta = 40^{\circ}$, find a, α and γ .
 - (c) If a = 3, b = 7 and $\alpha = 70^{\circ}$, find c, β and γ .
- 4. A loading ramp 10 feet long that makes an angle of 18° with the horizontal is to be replaced by one that makes an angle of 12° with the horizontal. How long is the new ramp?
- 5. Solve the following triangles:
 - (a) If $\alpha = 30^{\circ}$, b = 3 and c = 4, find a, β and γ .
 - (b) If a = 4, b = 3 and c = 4, find α, β and γ .
- 6. For any triangle show that $\cos \frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{ab}}$, where $s = \frac{1}{2}(a+b+c)$. **Hint:** Use a Half-Angle Formula and the Law of Cosines.
- 7. Find the area of each of the following triangles:
 - (a) a = 4, b = 5 and c = 3.
 - (b) a = 2, c = 1 and $\beta = 10^{\circ}$.
- 8. Show that a formula for the altitude h from a vertex to the opposite side a of a triangle is $h = \frac{a \sin \beta \sin \gamma}{\sin \alpha}.$

Hint: Use two different area formulas to create a relation between h and sines.