HOMEWORK 9 - MATH 140 DUE DATE: Monday, November 14 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Use the information given about θ , $0 \le \theta \le 2\pi$, to find the exact value of $\sin(2\theta)$ and $\cos(\frac{\theta}{2})$.

(a)
$$\cos \theta = \frac{3}{5}, 0 < \theta < \frac{\pi}{2},$$
 (b) $\tan \theta = \frac{1}{2}, \pi < \theta < \frac{3\pi}{2}.$

2. Establish the following identities:

(a)
$$\sec(2\theta) = \frac{\sec^2\theta}{2 - \sec^2\theta}$$

(b) $\sin^2\theta\cos^2\theta = \frac{1}{8}[1 - \cos(4\theta)]$
(c) $1 - \frac{1}{2}\sin(2\theta) = \frac{\sin^3\theta + \cos^3\theta}{\sin\theta + \cos\theta}$

- 3. Find the exact value of each expression:
 - (a) $\cos(2\cos^{-1}\frac{4}{5})$

(b)
$$\cos^2\left(\frac{1}{2}\sin^{-1}\frac{3}{5}\right)$$

- 4. Convert the following to sums or products containing only sines and cosines as appropriate:
 - (a) $\cos(4\theta)\cos(2\theta)$
 - (b) $\sin \frac{\theta}{2} \cos \frac{5\theta}{2}$
 - (c) $\sin(4\theta) + \sin(2\theta)$
 - (d) $\sin \frac{\theta}{2} \sin \frac{3\theta}{2}$
- 5. Establish each identity:

(a)
$$\frac{\cos\theta + \cos(3\theta)}{2\cos(2\theta)} = \cos\theta$$

(b) $\sin\theta [\sin(3\theta) + \sin(5\theta)] = \cos\theta [\cos(3\theta) - \cos(5\theta)]$

6. Solve each equation in the interval $0 \le \theta < 2\pi$.

(a)
$$1 - \cos \theta = \frac{1}{2}$$

- (b) $4\sin\theta + 3\sqrt{3} = \sqrt{3}$.
- 7. Solve each equation in the interval $0 \le \theta < 2\pi$.

(a)
$$2\cos^2\theta + \cos\theta - 1 = 0$$

- (b) $\sin(2\theta)\sin\theta = \cos\theta$
- 8. Solve each equation in the interval $0 \le \theta < 2\pi$.
 - (a) $\sin(2\theta) + \sin(4\theta) = 0$
 - (b) $1 + \sin \theta = 2\cos^2 \theta$
 - (c) $\sqrt{3}\sin\theta + \cos\theta = 1$