## EXAM 3 - MATH 102

## DATE: Friday, November 10

## INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

## GOOD LUCK!!

1. Use the special products to perform the indicated multiplications:

(a) 
$$(2x+y)(2x-y)y^2$$
 (1 point)

(b) 
$$[(2x-1)-4y]^2$$
 (2 points)

(c) 
$$[2y + (3x - 1)]^2$$
 (2 points)

2. Factor the following polynomials:

(a) 
$$x^6 - 2x^5 + 2x^4 - 4x^3$$
 (1 point)

(b) 
$$4x^2 - 12xy + 9y^2$$
 (2 points)

(c) 
$$25x^2 - (4y^2 - 4yz + z^2)$$
 (2 points)

- 3. The cost of serving x customers is given by  $(x^2 + 10x + 100)$  dollars. If \$1300 is spent serving customers, how many customers are served? (5 points)
- 4. Perform the operations and simplify:

(a) 
$$\frac{x^2+2x-15}{x^2-7x+10} \cdot \frac{x^2-6x+8}{x^2-x-12}$$
 (1 point)

(b) 
$$\frac{x^2 + xy - 2y^2}{x^2 - 4y^2} \div \frac{x^2 - y^2}{x^2 - 2xy} \cdot \frac{(x+y)^2}{x^2}$$
 (2 points)

(c) 
$$\frac{x+3}{x^2-x-2} - \frac{x-1}{x^2+2x+1}$$
 (2 points)

5. Simplify the following complex fractions:

(a) 
$$\frac{3-\frac{2}{y}}{\frac{1}{y}+4}$$
 (1 point)

(b) 
$$\frac{\frac{3}{x-4} - \frac{16}{x-3}}{\frac{2}{x-3} - \frac{15}{x-5}}$$
 (2 points)

(c) 
$$\frac{x(x+y)^{-1}+1}{1-y(x+y)^{-1}}$$
 (2 points)