PRACTICE EXAM 4 - MATH 140

DATE: Friday, November 10

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Copy the following table and, then, fill-in the appropriate values (5 points). All given angles are in radians.

$$\begin{array}{c|cccc}
\theta & \frac{7\pi}{4} & \frac{5\pi}{6} & \frac{4\pi}{3} \\
\hline
\sin \theta & \\
\cos \theta & \\
\end{array}$$

- 2. Suppose that the point (7, -3) is on the terminal side of the angle θ that is placed in standard position.
 - (a) Find $\sin \theta$ and $\cos \theta$. (3 points)
 - (b) Find $\tan \theta$ and $\cot \theta$. (1 point)
 - (c) Find $\sec \theta$ and $\csc \theta$. (1 point)
- 3. Suppose that $\cos \theta = \frac{4}{5}$ and that $\frac{3\pi}{2} < \theta < 2\pi$.
 - (a) Find $\sin \theta$. (2 points)
 - (b) Find $\tan \theta$ and $\cot \theta$. (1 point)
 - (c) Find $\sec \theta$ and $\csc \theta$. (1 point)
 - (d) Find $\sin (\pi + \theta)$. (1 point)
- 4. (a) Roughly sketch the graph of $f(x) = \sin x$ in one period showing me all important points. (1 point)
 - (b) Which transformations should be performed on that graph to obtain the graph of $g(x) = \frac{3}{2}\sin(2x \pi)$? (2 points)
 - (c) Use the second part to obtain a graph of y = g(x). (2 points)
- 5. Consider the function $f(x) = -5\sin(6x + 3\pi)$.
 - (a) Find its amplitude. (0.5 points)
 - (b) Find its period. (1 point)
 - (c) Find its phase shift. (1 point)
 - (d) Roughly sketch the graph of f based on the amplitude and the period. (2.5 points)