PRACTICE EXAM 6 - MATH 140

DATE: Friday, December 1

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Find the exact value of the expression $\csc(\cos^{-1}(-\frac{\sqrt{3}}{2}))$. (1 point)
 - (b) Find the exact value of the expression $\sec (\sin^{-1}(\frac{2\sqrt{5}}{5}))$. (2 points)
 - (c) Find the exact value of the expression $\sin(\tan^{-1}(\frac{1}{2}))$. (2 points)
- 2. (a) Establish the identity $\frac{\cot \theta}{1-\tan \theta} + \frac{\tan \theta}{1-\cot \theta} = 1 + \tan \theta + \cot \theta$. (2.5 points)
 - (b) Establish the identity $\frac{\cos^2\theta \sin^2\theta}{1 \tan^2\theta} = \cos^2\theta$. (2.5 points)
- 3. (a) Suppose $\alpha = \sin^{-1} \frac{4}{7}$ Find $\sin \alpha$ and $\cos \alpha$. (1 point).
 - (b) Suppose $\beta = \tan^{-1}(-\frac{5}{12})$. Find $\sin \beta$ and $\cos \beta$. (2 points)
 - (c) Find $\sin (\alpha \beta)$. (2 points)
- 4. Compute $\cos(\tan^{-1}\frac{3}{4}+\sin^{-1}(-\frac{12}{13}))$. I want to see **all** the details **neatly written** down. (5 points).
- 5. Solve each equation in the interval $0 \le \theta < 2\pi$.
 - (a) $\cos(2\theta) + 6\sin^2\theta = 4$ (3 points)
 - (b) $\sec \theta = \tan \theta + \cot \theta$. (2 points)