EXAM 1 - MATH 112

DATE: Tuesday, September 25

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Let $f(x) = \frac{1}{5-x}$ and $g(x) = \sqrt{x-2}$. Find a formula for $(g \circ f)(x)$ and simplify. (2 points) Find Dom(f) and Dom(g). (1 point) Find the domain of $g \circ f$. (2 points)
- 2. Find $f^{-1}(x)$ if $f(x) = \sqrt[3]{\frac{x-2}{2x-5}}$. (3 points) To verify your answer check that $(f \circ f^{-1})(x) = x$. (2 points)
- 3. Find the following limits:
 - (a) $\lim_{x\to -1} \frac{7x+8-x^2}{3x^2+7x+4}$ (2.5 point)
 - (b) $\lim_{x\to 5} \frac{x-5}{\sqrt{x-4}-1}$ (2.5 points)
- 4. Consider the function $f(x) = \begin{cases} 4, & \text{if } x \le -1 \\ -x^2 + 5, & \text{if } -1 < x \le 2 \\ -2x + 8, & \text{if } x > 2 \end{cases}$
 - (a) Roughly sketch the graph of y = f(x). (2 points)
 - (b) Find the $\lim_{x\to -1} f(x)$ and $\lim_{x\to 2} f(x)$, if they exist. (2 points)
 - (c) Is f continuous at x = -1? How about at x = 2? Please, explain. (1 point)
- 5. Use the **limit definition of the derivative** to compute the equation of the tangent line to the graph of $f(x) = x^3 2$ at the point x = 2. (5 points)
- 6. Find all points on the graph of $f(x) = \frac{8}{3}x^3 28x + 5$ at which the tangent lines to the graph have slope 4. (5 points)