EXAM 1: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 1. Let A,B be sets and f : A — B,g: B — A be two functions such that
go f =14. Show that f is one-to-one and that g is onto.

2. Find an example of two sets A, B and two functions f,g, such that go f = 14, f is
not onto and g is not one-to-one.

Solution:

1. Suppose that ai,as € A, such that f
(gof)(a1) = (gof)(az), ie., 1a(ar) =

Now let a € A. We have a = 14(a) = (go f)(a) = g(f(a)). Thus a € g(B), which
shows that g is onto.

a1) = f(az). Then g(f(a1)) = g(f(az)). Thus
A(az), which yields a; = ag and f is one-to-one.

—_

0, ifn=20
n—1 ifn>1
Then it is easy to see that go f = 1 without f being onto and without g being one-
to-one. |

2. Take A = B = N and define f(n) = n+1, foralln € N, and g(n) = {

Problem 2 In IR x R consider the relation ~, such that (z1,y1) ~ (z2,y2) if and only if
3y1 — 2x1 = 3y — 2xo. Determine whether ~ is an equivalence relation and, if so, describe
its equivalence classes.

Solution:

We have, for all (z,y) € IR?, 3y — 22 = 3y — 2z, whence (2,9) ~ (z,y) and ~ is
reflexive. If (z1,y1) ~ (x2,¥2), then 3y; — 2x; = 3ys — 222, whence 3y, — 2z9 = 3y; — 221,
ie., (x2,y2) ~ (x1,y1), and ~ is symmetric. Finally, suppose that (z1,y1) ~ (z2,y2) and
(z2,y2) ~ (x3,y3). Then 3y; — 221 = 3yz — 222 and 3ys — 229 = 3y3 — 2x3. Therefore
3y1 — 2x1 = 3ys — 2x3, whence (x1,y1) ~ (x3,y3) and ~ is transitive. Thus ~ is an
equivalence relation. To find out what its equivalence classes look like, let us fix a pair
(a,b) € IR?. We have

[(a7b)] = {(l',y) € IR2 : (x,y) ~ (a’ b)}
{(z,y) € R?: 3y — 2z = 3b — 2a}
{(z,y) € R?: y = 2u 4 3020},

Thus, each of the equivalence classes is a straight line with slope % IR? is partitioned by ~

into infinitely many parallel straight lines. |
Problem 3 Show that n is prime if and only if in Zy, [r][s] = [0] always implies [r] = [0]
or [s] = [0].



Solution:

First we show that if n is prime, then in Z,, [r][s] = [0] always implies [r] = [0] or
[s] = [0]. So, suppose that [rs] = [0]. This gives n\rs. But, since n is a prime, n\r or n\s.
Therefore [r] = [0] or [s] = [0].

Conversely, suppose that in Z,, [r][s] = [0] always implies [r] = [0] or [s] = [0]. We need
to show that n is a prime. We will show that the contrapositive holds, i.e., that, if n is not
prime, then, there exist r, s, such that [r][s] = [0] with [r] # [0] and [s] # [0]. So, suppose
that n is not prime. Then there exist r,s € Z,, such that n = rs and 1 < r,;s < n. This
shows that [r] # [0], [s] # [0] and [r][s] = [rs] = [n] = [0]. [ ]

Problem 4 Find all the complex fourth roots of —1 — 1.

Solution:
Suppose that z = r(cos ¢ + isin ¢) is a complex fourth root of —1 — . Then we have

2t = r4(cos (4¢) +isin (4¢)) = —1 —i = 2(—£ — i@) = V2(

57r+,s, 577)
Ccos — —+4s8in —).
2 2

4 4

Thus r* = /2 and 4¢ = %r + 2km, whence r = /2 and ¢ = ?—g + k7. The following table
gives the different angles and the resulting solutions:

k¢ z

0 %r \S/i(cos(? )—i—zsm(?(j))
1 1% \B/i(cos(%) +zs1n(113—7r))
2 211% \8/5(008(211—”) —|—zsm(211gr))
3 ZF V2(cos (FF) +isin (3F))

Problem 5 1. Show that if A,B € M(2,C) are invertible, then so is AB.

2. Find all matrices A with det(A) =1 in M(2,Zs3).

Solution:

1. If A,B € M(2,C) are invertible, we have |A|,|B| # 0. But then |AB| = |A||B| # 0
and AB is also invertible.

a b
d
i.e., ad = 1 + bc. Thus, we have the following three cases:

2. Suppose that A = € M(2,Z3) is such that det(A) = 1. Then ad — bc = 1,

(a) bc =0 and ad = 1. This gives b =0 or ¢ = 0 and at the same time a =d =1 or
a = d = 2. Therefore we have the following matrices:

R R R R E R A E!

2



20 2 0 2 0 21 2 2
0O 21’11 21’12 21’10 21’0 2"
(b) bc =1 and ad = 2. In thiscaseb=c=1lorb=c=2anda=1and d =2 or
a =2 and d = 1. Thus we have the matrices

11 2 1 1 2 2 2
1 20’1 1’2 2|2 1]
(¢c) be=2and ad =0. In thiscaseb=1andc=2orb=2and c=1and a =0 or
d = 0. Thus, we obtain the matrices

ol ae] 5]
AR bR b A !



