
EXAM 2: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 Let G be a nonempty finite set closed under an associative operation such that
both the left and the right cancellation laws hold. Show that G under this operation is a
group.

Solution:
Suppose that G is a nonempty finite set closed under an operation ∗, such that

1. ∗ is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G,

2. the left cancellation law for ∗ holds, i.e., a ∗ b = a ∗ c implies b = c, for all a, b, c ∈ G,
and

3. the right cancellation law for ∗ holds, i.e., b ∗a = c ∗a implies b = c, for all a, b, c ∈ G.

To show that under these conditions 〈G, ∗〉 is a group we need to prove that it has an
identity and that every element in G has an inverse in G with respect to ∗.

Let a ∈ G, which exists since G 6= ∅. Consider the set

A = {an := a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
n

: n ≥ 1} ⊆ G.

Since G is finite, there exist n,m ∈ N∗, with m < n, such that am = an. Hence am =
am+(n−m), whence am = am ∗ an−m. Now set e := an−m. we will show that this e is the
identity in G for ∗, i.e., that b ∗ e = e ∗ b = b, for all b ∈ G. We have

b ∗ am = (b ∗ am) ∗ an−m

= b ∗ (am ∗ an−m)
= b ∗ (an−m ∗ am)
= (b ∗ an−m) ∗ am

= (b ∗ e) ∗ am.

Now the right cancellation law applies to give b = b ∗ e. For the left-hand side identity we
work symmetrically.

Now consider b ∈ G. We have, as above for a that bp = bq, for some p, q ∈ N∗, with
p < q. Then bp ∗ e = bq = bp ∗ bq−p, whence, by the left cancellation law, e = bq−p. Since
q − p ≥ 1, we either have q − p = 1 or q − p > 1. If q − p = 1, then b = e, whence e−1 = e.
If q − p > 1, then e = b ∗ bq−p−1 = bq−p−1 ∗ b, whence b−1 = bq−p−1. Thus, in every case b
has an inverse in G with respect to ∗. This shows that 〈G, ∗〉 is a group. ¥

Problem 2 Let G be a group, a ∈ G and m,n relatively prime integers. Show that if
am = e, then there exists an element b ∈ G, such that a = bn.
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Solution:
Since am = e we must have that |a|\m, i.e., there exists a positive integer k, such

that m = k|a|. Now m,n relatively prime implies that there exist integers x, y, such that
xm + yn = 1. Combining the two previous relations, we obtain xk|a|+ yn = 1.

Now set b = ay ∈ G. We have

bn = (ay)n

= ayn

= a1−xk|a|

= a(a|a|)−xk

= a.

¥

Problem 3 Let G be a group and a ∈ G. Show that the centralizer C(a) is a subgroup of
G.

Solution:
Suppose that b, c ∈ C(a), i.e., ab = ba and ac = ca. We first show that bc ∈ C(a), i.e.,

that a(bc) = (bc)a. We have
a(bc) = (ab)c

= (ba)c
= b(ac)
= b(ca)
= (bc)a.

Finally, we show that b−1 ∈ C(a), i.e., ab−1 = b−1a. Since b ∈ C(a), we get ab = ba, whence
b−1abb−1 = b−1bab−1 and, therefore, b−1a = ab−1. ¥

Problem 4 The stochastic group Σ(2, IR) consists of all those matrices in GL(2, IR)
whose column sums are 1. Show that this is in fact a subgroup of GL(2, IR).

Solution:

Let
[

a b
c d

]
,

[
x y
z w

]
∈ Σ(2, IR). We thus have a + c = b + d = 1 and x + z =

y + w = 1. We show that
[

a b
c d

] [
x y
z w

]
∈ Σ(2, IR). We have

[
a b
c d

] [
x y
z w

]
=

[
ax + bz ay + bw
cx + dz cy + dw

]
∈ Σ(2, IR), since ax + bz + cx + dz = (a + c)x + (b + d)z = x + z = 1

and ay + bw + cy + dw = (a + c)y + (b + d)w = y + w = 1.

To show that
[

a b
c d

]−1

=
[ d

ad−bc
−b

ad−bc−c
ad−bc

a
ad−bc

]
∈ Σ(2, IR), note that

ad− bc = a(1− b)− b(1− a) = a− ab− b + ab = a− b
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and, similarly

ad− bc = (1− c)d− (1− d)c = d− cd− c + dc = d− c.

Therefore d
ad−bc + −c

ad−bc = d−c
ad−bc = 1 and −b

ad−bc + a
ad−bc = a−b

ad−bc = 1. ¥

Problem 5 1. Let G = 〈a〉 be a cyclic subgroup of order 20. Find all the elements b ∈ G
of order |b| = 10.

2. Let H and K be cyclic subgroups of an Abelian group G, with |H| = 10 and |K| = 14.
Show that G contains a cyclic subgroup of order 70.

Solution:

1. Let b = an be such that |b| = 10. Then |an| = 10, whence 20
gcd(n,20) = 10. Therefore,

we must have gcd(n, 20) = 2. The only four numbers 1 ≤ n ≤ 20 that satisfy this
condition are 2, 6, 14 and 18. Hence

a2, a6, a14, a18

is the list of all elements in G of order 10.

2. Let H = 〈a〉 and K = 〈b〉, with |a| = 10 and |b| = 14. Then the element a2 ∈ H has
order |a2| = 5. We claim that |a2b| = 70, whence the element a2b ∈ G generates a
cyclic subgroup of order 70.

First note that (a2b)70 = (a2)70b70 = a140b70 = (a10)14(b14)5 = e.

Suppose that (a2b)n = e. Then a2nbn = e, whence a2n = b−n ∈ 〈a2〉 ∩ K. But
〈a2〉 ∩K = {e}, since their orders are relatively prime, whence we must have a2n =
e = bn. Therefore 5\n and 14\n, whence 70\n, i.e., n ≥ 70. This proves that |a2b| = 70,
as was to be shown.

¥
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