EXAM 2: SOLUTIONS - MATH 341 INSTRUCTOR: George Voutsadakis

Problem 1 Let G be a nonempty finite set closed under an associative operation such that both the left and the right cancellation laws hold. Show that G under this operation is a group.

Solution:

Suppose that G is a nonempty finite set closed under an operation *, such that

- 1. * is associative, i.e., (a * b) * c = a * (b * c), for all $a, b, c \in G$,
- 2. the left cancellation law for * holds, i.e., a * b = a * c implies b = c, for all $a, b, c \in G$, and
- 3. the right cancellation law for * holds, i.e., b * a = c * a implies b = c, for all $a, b, c \in G$.

To show that under these conditions $\langle G, * \rangle$ is a group we need to prove that it has an identity and that every element in G has an inverse in G with respect to *.

Let $a \in G$, which exists since $G \neq \emptyset$. Consider the set

$$A = \{a^n := \underbrace{a * a * \ldots * a}_n : n \ge 1\} \subseteq G$$

Since G is finite, there exist $n, m \in \mathbf{N}^*$, with m < n, such that $a^m = a^n$. Hence $a^m = a^{m+(n-m)}$, whence $a^m = a^m * a^{n-m}$. Now set $e := a^{n-m}$, we will show that this e is the identity in G for *, i.e., that b * e = e * b = b, for all $b \in G$. We have

$$b * a^{m} = (b * a^{m}) * a^{n-m}$$

= $b * (a^{m} * a^{n-m})$
= $b * (a^{n-m} * a^{m})$
= $(b * a^{n-m}) * a^{m}$
= $(b * e) * a^{m}$.

Now the right cancellation law applies to give b = b * e. For the left-hand side identity we work symmetrically.

Now consider $b \in G$. We have, as above for a that $b^p = b^q$, for some $p, q \in \mathbb{N}^*$, with p < q. Then $b^p * e = b^q = b^p * b^{q-p}$, whence, by the left cancellation law, $e = b^{q-p}$. Since $q - p \ge 1$, we either have q - p = 1 or q - p > 1. If q - p = 1, then b = e, whence $e^{-1} = e$. If q - p > 1, then $e = b * b^{q-p-1} = b^{q-p-1} * b$, whence $b^{-1} = b^{q-p-1}$. Thus, in every case b has an inverse in G with respect to *. This shows that $\langle G, * \rangle$ is a group.

Problem 2 Let G be a group, $a \in G$ and m, n relatively prime integers. Show that if $a^m = e$, then there exists an element $b \in G$, such that $a = b^n$.

Solution:

Since $a^m = e$ we must have that $|a| \setminus m$, i.e., there exists a positive integer k, such that m = k|a|. Now m, n relatively prime implies that there exist integers x, y, such that xm + yn = 1. Combining the two previous relations, we obtain xk|a| + yn = 1.

Now set $b = a^y \in G$. We have

$$b^n = (a^y)^n$$

= a^{yn}
= $a^{1-xk|a|}$
= $a(a^{|a|})^{-xk}$
= a .

Problem 3 Let G be a group and $a \in G$. Show that the centralizer C(a) is a subgroup of G.

Solution:

Suppose that $b, c \in C(a)$, i.e., ab = ba and ac = ca. We first show that $bc \in C(a)$, i.e., that a(bc) = (bc)a. We have

$$a(bc) = (ab)c$$

= (ba)c
= b(ac)
= b(ca)
= (bc)a

Finally, we show that $b^{-1} \in C(a)$, i.e., $ab^{-1} = b^{-1}a$. Since $b \in C(a)$, we get ab = ba, whence $b^{-1}abb^{-1} = b^{-1}bab^{-1}$ and, therefore, $b^{-1}a = ab^{-1}$.

Problem 4 The stochastic group $\Sigma(2, \mathbb{R})$ consists of all those matrices in $GL(2, \mathbb{R})$ whose column sums are 1. Show that this is in fact a subgroup of $GL(2, \mathbb{R})$.

Solution: Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\begin{bmatrix} x & y \\ z & w \end{bmatrix} \in \Sigma(2, \mathbb{R})$. We thus have a + c = b + d = 1 and x + z = y + w = 1. We show that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in \Sigma(2, \mathbb{R})$. We have $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{bmatrix} \in \Sigma(2, \mathbb{R})$, since ax + bz + cx + dz = (a + c)x + (b + d)z = x + z = 1and ay + bw + cy + dw = (a + c)y + (b + d)w = y + w = 1. To show that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{-b}{ad - bc} \end{bmatrix} \in \Sigma(2, \mathbb{R})$, note that ad - bc = a(1 - b) - b(1 - a) = a - ab - b + ab = a - b and, similarly

$$ad - bc = (1 - c)d - (1 - d)c = d - cd - c + dc = d - c.$$

Therefore $\frac{d}{ad-bc} + \frac{-c}{ad-bc} = \frac{d-c}{ad-bc} = 1$ and $\frac{-b}{ad-bc} + \frac{a}{ad-bc} = \frac{a-b}{ad-bc} = 1$.

- **Problem 5** 1. Let $G = \langle a \rangle$ be a cyclic subgroup of order 20. Find all the elements $b \in G$ of order |b| = 10.
 - 2. Let H and K be cyclic subgroups of an Abelian group G, with |H| = 10 and |K| = 14. Show that G contains a cyclic subgroup of order 70.

Solution:

1. Let $b = a^n$ be such that |b| = 10. Then $|a^n| = 10$, whence $\frac{20}{\gcd(n,20)} = 10$. Therefore, we must have $\gcd(n,20) = 2$. The only four numbers $1 \le n \le 20$ that satisfy this condition are 2, 6, 14 and 18. Hence

$$a^2, a^6, a^{14}, a^{18}$$

is the list of all elements in G of order 10.

2. Let $H = \langle a \rangle$ and $K = \langle b \rangle$, with |a| = 10 and |b| = 14. Then the element $a^2 \in H$ has order $|a^2| = 5$. We claim that $|a^2b| = 70$, whence the element $a^2b \in G$ generates a cyclic subgroup of order 70.

First note that $(a^2b)^{70} = (a^2)^{70}b^{70} = a^{140}b^{70} = (a^{10})^{14}(b^{14})^5 = e.$

Suppose that $(a^2b)^n = e$. Then $a^{2n}b^n = e$, whence $a^{2n} = b^{-n} \in \langle a^2 \rangle \cap K$. But $\langle a^2 \rangle \cap K = \{e\}$, since their orders are relatively prime, whence we must have $a^{2n} = e = b^n$. Therefore $5 \setminus n$ and $14 \setminus n$, whence $70 \setminus n$, i.e., $n \ge 70$. This proves that $|a^2b| = 70$, as was to be shown.