EXAM 3: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 1. Let H = {0 € Sy :0(2) = 2}. Show that H is a subgroup of Sy and find
its order.

2. Show that if o € S,, and |o| =2, then o is a product of disjoint 2-cycles.

Solution:

1. Let 0,7 € H. Then ¢(2) = 2 and 7(2) = 2. This, in particular, implies that 771(2) = 2.
Therefore we have (o771)(2) = o(771(2)) = 0(2) = 2. Hence o7~ ! € H and H < ;.
The permutations of H leave 2 fixed and act arbitrarily on {1,3,4}. Hence H = Ss,
whence |H| = |S3| = 6.

2. Let 0 € Sy, such that |o| = 2. Then o cannot be the identity since then its order would
be 1 contrary to the hypothesis. Suppose that in the unique cycle decomposition of
o, there exists a cycle of length k£ > 3. Then, since the order of ¢ is the least common
multiple of the lengths of its cycles, we would have had |o| > 3, contrary to hypothesis.
Thus, all cycles in the cycle decomposition of ¢ must be 2-cycles.

Problem 2 1. Find all the cosets of (6) in Z12 and all the cosets of (6) in the subgroup
<2> Of Z12.

2. Let H be a subgroup of a group G. Show that for any a € G we have |Ha| = |H|.
Solution:
1. We have |6| = 2, whence [(6)| = 2 and [Z;2 : (6)] = 6. The six cosets are

{0,6}, {1, 7}, {2,8},{3,9}, {4, 10}, {5, 11}.

We have (2) = {0,2,4,6,8,10} and (6) = {0,6}, whence [(2) : (6)] = 3. The three
cosets are

{0,6},{2,8}, {4, 10}.

2. We need to define a 1-1 onto mapping ¢ : H — Ha. Consider ¢, such that ¢(h) = ha,
for all h € H. To show that ¢ is 1-1, let hi,ho € H. Then ¢(h1) = ¢(ha) implies
hia = hsa, whence hiaa " = hgaa™!, ie., hy = hy and ¢ is 1-1. ¢ is onto by the
definition of Ha.

Problem 3 Let H be a subgroup of a group G. Show that the map a — a~' determines a
one-one, onto map between the left cosets of H and the right cosets of H.



Solution:

The map from the left to the right cosets of H in G is determined by ¢(aH) = Ha ™!,
for all @ € G. This is a well-defined map since, if aH = bH, then b~'a € H, whence
Hb~! = Ha™!, and, therefore, ¢(aH) = ¢(bH).

To show that ¢ is 1-1, let a,b € G. Then ¢(aH) = ¢(bH) implies Ha~' = Hb~!, whence
a~'b € H and, therefore, aH = bH.

To show that it is an onto mapping, let Ha be a right coset. Then ¢(a 'H) =
H(a Y1 = Ha. [

Problem 4 1. Let ¢ : G — G’ be a homomorphism, K = Kern(¢) and a € G. Show
that {x € G : ¢(x) = ¢(a)} = aK, the left coset of K to which the element a belongs.

2. Show that U(14) = U(18).

Solution:

1. First, suppose that g € {x € G : ¢(z) = ¢(a)}. Then ¢(g) = ¢(a), whence ¢(a~lg) =
#(a)"Lo(g) = ¢, i.e., a~'g € K. Therefore g € aK. Suppose, for the reverse inclusion
that ¢ € aK. Then a g € K, whence ¢(a=lg) = €, ie., ¢(a)"1¢p(g) = € and,
therefore, ¢(a) = ¢(g).

2. We have U(14) = {1,3,5,9,11,13} and U(18) = {1,5,7,11,13,17}. Both are cyclic of
order 6: U(14) = (3) and U(18) = (5). Hence they are isomorphic.

r 0

Problem 5 1. Forr e R* letr]l = [ 0 r ] . Show that H = {rI : r € R*} is a normal

subgroup of GL(2,R).

2. Let Z(G) be the center of a group G. Show that if the index |G : Z(G)] = p, a prime,
then G is Abelian.

Solution:

1. To show that it is a subgroup, let rI,sI € H. Then (rI)(sI)~! = (rI)(s7I) =
(rs™1)I € H.

r 0

To show it is normal, let [ Z ., ] € H. Then, we have

Z } € GL(2,IR), [

I



2. In Problem 5 of Homework 6, it was shown that if G/Z(G) is cyclic then G is abelian.
Now, if [G : Z(G)] = p a prime, then G/Z(G) is a group of prime order and therefore
cyclic. Therefore G is abelian.



