
EXAM 3: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis
Problem 1 1. Let H = {σ ∈ S4 : σ(2) = 2}. Show that H is a subgroup of S4 and find

its order.

2. Show that if σ ∈ Sn and |σ| = 2, then σ is a product of disjoint 2-cycles.

Solution:

1. Let σ, τ ∈ H. Then σ(2) = 2 and τ(2) = 2. This, in particular, implies that τ−1(2) = 2.
Therefore we have (στ−1)(2) = σ(τ−1(2)) = σ(2) = 2. Hence στ−1 ∈ H and H ≤ S4.
The permutations of H leave 2 fixed and act arbitrarily on {1, 3, 4}. Hence H ∼= S3,
whence |H| = |S3| = 6.

2. Let σ ∈ Sn, such that |σ| = 2. Then σ cannot be the identity since then its order would
be 1 contrary to the hypothesis. Suppose that in the unique cycle decomposition of
σ, there exists a cycle of length k ≥ 3. Then, since the order of σ is the least common
multiple of the lengths of its cycles, we would have had |σ| ≥ 3, contrary to hypothesis.
Thus, all cycles in the cycle decomposition of σ must be 2-cycles.

¥

Problem 2 1. Find all the cosets of 〈6〉 in Z12 and all the cosets of 〈6〉 in the subgroup
〈2〉 of Z12.

2. Let H be a subgroup of a group G. Show that for any a ∈ G we have |Ha| = |H|.

Solution:

1. We have |6| = 2, whence |〈6〉| = 2 and [Z12 : 〈6〉] = 6. The six cosets are

{0, 6}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}.
We have 〈2〉 = {0, 2, 4, 6, 8, 10} and 〈6〉 = {0, 6}, whence [〈2〉 : 〈6〉] = 3. The three
cosets are

{0, 6}, {2, 8}, {4, 10}.

2. We need to define a 1-1 onto mapping φ : H → Ha. Consider φ, such that φ(h) = ha,
for all h ∈ H. To show that φ is 1-1, let h1, h2 ∈ H. Then φ(h1) = φ(h2) implies
h1a = h2a, whence h1aa−1 = h2aa−1, i.e., h1 = h2 and φ is 1-1. φ is onto by the
definition of Ha.
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Problem 3 Let H be a subgroup of a group G. Show that the map a 7→ a−1 determines a
one-one, onto map between the left cosets of H and the right cosets of H.
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Solution:
The map from the left to the right cosets of H in G is determined by φ(aH) = Ha−1,

for all a ∈ G. This is a well-defined map since, if aH = bH, then b−1a ∈ H, whence
Hb−1 = Ha−1, and, therefore, φ(aH) = φ(bH).

To show that φ is 1-1, let a, b ∈ G. Then φ(aH) = φ(bH) implies Ha−1 = Hb−1, whence
a−1b ∈ H and, therefore, aH = bH.

To show that it is an onto mapping, let Ha be a right coset. Then φ(a−1H) =
H(a−1)−1 = Ha. ¥

Problem 4 1. Let φ : G → G′ be a homomorphism, K = Kern(φ) and a ∈ G. Show
that {x ∈ G : φ(x) = φ(a)} = aK, the left coset of K to which the element a belongs.

2. Show that U(14) ∼= U(18).

Solution:

1. First, suppose that g ∈ {x ∈ G : φ(x) = φ(a)}. Then φ(g) = φ(a), whence φ(a−1g) =
φ(a)−1φ(g) = e′, i.e., a−1g ∈ K. Therefore g ∈ aK. Suppose, for the reverse inclusion
that g ∈ aK. Then a−1g ∈ K, whence φ(a−1g) = e′, i.e., φ(a)−1φ(g) = e′ and,
therefore, φ(a) = φ(g).

2. We have U(14) = {1, 3, 5, 9, 11, 13} and U(18) = {1, 5, 7, 11, 13, 17}. Both are cyclic of
order 6: U(14) = 〈3〉 and U(18) = 〈5〉. Hence they are isomorphic.
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Problem 5 1. For r ∈ IR∗ let rI =
[

r 0
0 r

]
. Show that H = {rI : r ∈ IR∗} is a normal

subgroup of GL(2, IR).

2. Let Z(G) be the center of a group G. Show that if the index [G : Z(G)] = p, a prime,
then G is Abelian.

Solution:

1. To show that it is a subgroup, let rI, sI ∈ H. Then (rI)(sI)−1 = (rI)(s−1I) =
(rs−1)I ∈ H.

To show it is normal, let
[

a b
c d

]
∈ GL(2, IR),

[
r 0
0 r

]
∈ H. Then, we have

[
a b
c d

] [
r 0
0 r

] [
a b
c d

]−1

=
[

ra rb
rc rd

] [
a b
c d

]−1

= r

[
a b
c d

] [
a b
c d

]−1

= rI
∈ H

.
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2. In Problem 5 of Homework 6, it was shown that if G/Z(G) is cyclic then G is abelian.
Now, if [G : Z(G)] = p a prime, then G/Z(G) is a group of prime order and therefore
cyclic. Therefore G is abelian.
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