
EXAM 4: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 1. Let G be a group, H C G,φ ∈ Aut(G). Show that φ(H) C G.

2. Let G1, G2 be groups. Show that Z(G1 ×G2) ∼= Z(G1)× Z(G2).

Solution:

1. Suppose x ∈ φ(H) and g ∈ G. We need to show that gxg−1 ∈ φ(H). Since x ∈ φ(H),
there exists h ∈ H, such that x = φ(h). Furthermore, since φ is an automorphism, it is
onto. Hence there is g′ ∈ G, such that g = φ(g′). Hence gxg−1 = φ(g′)φ(h)φ(g′)−1 =
φ(g′hg′−1) ∈ φ(H), since h ∈ H and H C G implies g′hg′−1 ∈ H.

2. We show that Z(G1 × G2) ∼= Z(G1) × Z(G2). We have (z1, z2) ∈ Z(G1) × Z(G2) if
and only if z1 ∈ Z(G1) and z2 ∈ Z(G2) if and only if, for all g1 ∈ G1 and g2 ∈ G2,
g1z1 = z1g1 and g2z2 = z2g2 if and only if, for all g1 ∈ G1 and g2 ∈ G2, (g1z1, g2z2) =
(z1g1, z2g2) if and only if for all (g1, g2) ∈ G1 ×G2, (g1, g2)(z1, z2) = (z1, z2)(g1, g2) if
and only if (z1, z2) ∈ Z(G1 × G2). So, as sets Z(G1 × G2) = Z(G1) × Z(G2). That
their operations yield isomorphic groups under the identity function is very easy to
see.
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Problem 2 1. Find the largest order of any element in Z21 × Z35.

2. Let G be an Abelian group and φ : G → G a homomorphism such that φ(φ(g)) = g
for all g ∈ G. Show that G ∼= φ(G)×Kernφ.

Solution:

1. We now that the largest order is provided by the order of (1, 1). Thus, we have

|(1, 1)| = lcm(|1|, |1|) = lcm(21, 35) = 105.

2. We show that G = φ(G) ⊕ Ker(φ). Then, by Theorem 3.3.8, we will have G ∼=
φ(G) × Ker(φ). Since G is abelian, we have φ(G) C G and Ker(φ) C G. Therefore, it
suffices to show that φ(G) ∩Ker(φ) = {1} and φ(G)Ker(φ) = G.

For the first equality, let x ∈ φ(G) ∩ Ker(φ). Then, there exists g ∈ G, such that
x = φ(g) and φ(x) = 1. But this gives φ(φ(g)) = 1, i.e., g = 1. Therefore φ(G) ∩
Ker(φ) = {1}.
For the second equality, notice that g = φ(φ(g)) = φ(φ(g))1 ∈ φ(G)Ker(φ). Thus
G ⊆ φ(G)Ker(φ) and the reverse inclusion is trivial.
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Problem 3 1. Let p be a prime. Determine up to isomorphism all Abelian groups of
order pn that contain an element of order pn−2.

2. Describe the positive integers n such that Zn is up to isomorphism the only Abelian
group of order n.

Solution:

1. The element of order pn−2 has to generate a cyclic group of order pn−2. Thus, one
of the direct factors of the group has to be of order at least pn−2. This leaves the
following options:

Zpn−2 × Zp × Zp, Zpn−2 × Zp2 , Zpn−1 × Zp, Zpn .

2. By the fundamental theorem of finite abelian groups, each prime factor must occur
with power 1 in the direct decomposition of Zn. Therefore n must be square-free in
order for Zn to be the only abelian group of order n up to isomorphism.
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Problem 4 1. Let R be a ring. If S and T are subrings of R, show that S ∩ T is also
a subring of R.

2. Let R be a ring. Show that (a + b)(a− b) = a2 − b2 for all a, b ∈ R if and only if R is
a commutative ring.

Solution:

1. Let x, y ∈ S∩T. Then x, y ∈ S and x, y ∈ T, whence, since both S and T are subrings
of R, x− y ∈ S, xy ∈ S and x− y ∈ T, xy ∈ T. Thus x− y ∈ S ∩ T and xy ∈ S ∩ T.
Hence, by the subring criterion, S ∩ T is a subring of R.

2. Suppose that R is commutative. Then ab = ba, for all a, b ∈ R. Thus ab − ba = 0,
whence a2−b2 = a2−ab+ba−b2 = (a+b)(a−b), for all a, b ∈ R. Suppose, conversely,
that (a+ b)(a− b) = a2− b2. Then a2−ab+ ba− b2 = a2− b2. But then −ab+ ba = 0,
whence ab = ba, for all a, b ∈ R, and R is commutative.
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Problem 5 1. Give an example of a ring R and elements a, b and c in R such that
a 6= 0, ab = ac, but b 6= c.

2. Find all the subdomains of Z.

Solution:
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1. Take the ring R to be Z4 under addition and multiplication. Then 2 · 1 = 2 · 3, but
1 6= 3.

2. All the subdomains of Z have to contain the multiplicative identity 1. But every
subdomain that contains 1 is the entire domain since 1 is a generator for the additive
group of the integers. Therefore Z is the only subdomain of Z.
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