EXAM 4: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 1. Let G be a group, H < G, ¢ € Aut(G). Show that ¢(H) < G.
2. Let G1,G2 be groups. Show that Z(G1 x Ga) = Z(G1) x Z(G2).

Solution:

1. Suppose x € ¢(H) and g € G. We need to show that grg~! € ¢(H). Since x € ¢(H),
there exists h € H, such that = ¢(h). Furthermore, since ¢ is an automorphism, it is
onto. Hence there is ¢’ € G, such that g = ¢(g’). Hence gzg~! = ¢(g')p(h)d(g") ! =
#(g'hg'~1) € ¢(H), since h € H and H <1 G implies ¢’hg’~! € H.

2. We show that Z(G1 x G2) = Z(G1) x Z(G2). We have (z1,22) € Z(G1) x Z(G2) if
and only if z; € Z(G1) and zy € Z(G2) if and only if, for all g1 € G; and g2 € G,
9171 = z191 and gazo = za2g9 if and only if, for all g; € G1 and g2 € Ga, (9121, g222) =

(2191, 2292) if and only if for all (g1, g2) € G1 X G, (g1,92)(21,22) = (21, 22)(91, g2) if
and only if (z1,22) € Z(G1 X G3). So, as sets Z(G1 x G2) = Z(G1) x Z(G3). That

their operations yield isomorphic groups under the identity function is very easy to
see.

Problem 2 1. Find the largest order of any element in Zio X Z3s.

2. Let G be an Abelian group and ¢ : G — G a homomorphism such that ¢(é(g)) = g
for all g € G. Show that G = ¢(G) x Kerng.

Solution:
1. We now that the largest order is provided by the order of (1,1). Thus, we have

1(1,1)| = lem([1],]1]) = lem(21, 35) = 105.

2. We show that G = ¢(G) & Ker(¢). Then, by Theorem 3.3.8, we will have G =
#(G) x Ker(¢). Since G is abelian, we have ¢(G) < G and Ker(¢) < G. Therefore, it
suffices to show that ¢(G) N Ker(¢) = {1} and ¢(G)Ker(¢) = G.

For the first equality, let x € ¢(G) N Ker(¢). Then, there exists g € G, such that
r = ¢(g) and ¢(x) = 1. But this gives ¢(¢(g)) = 1, i.e., g = 1. Therefore ¢(G) N
Ker(6) = {1}

For the second equality, notice that ¢ = ¢(¢(g)) = ¢(p(g))1 € ¢(G)Ker(¢). Thus
G C ¢(G)Ker(¢) and the reverse inclusion is trivial.



Problem 3 1. Let p be a prime. Determine up to isomorphism all Abelian groups of
order p" that contain an element of order p"2.

2. Describe the positive integers n such that Z, is up to isomorphism the only Abelian
group of order n.

Solution:

1. The element of order p"~2 has to generate a cyclic group of order p”~2. Thus, one
of the direct factors of the group has to be of order at least p"~2. This leaves the
following options:

Z, n2 X Zp X Zp, Z n—2 X sz, Z, n-1 X Zp, an.

p p p

2. By the fundamental theorem of finite abelian groups, each prime factor must occur
with power 1 in the direct decomposition of Z,. Therefore n must be square-free in
order for Z, to be the only abelian group of order n up to isomorphism.

Problem 4 1. Let R be a ring. If S and T are subrings of R, show that S NT is also
a subring of R.

2. Let R be a ring. Show that (a+b)(a —b) = a® — b2 for all a,b € R if and only if R is
a commutative Ting.

Solution:

1. Let z,y € SNT. Then z,y € S and x,y € T, whence, since both .S and T are subrings
of R,x —yeSaeyeSande —yeT,ayeT. Thusz—ye SNT and xy € SNT.
Hence, by the subring criterion, S N7 is a subring of R.

2. Suppose that R is commutative. Then ab = ba, for all a,b € R. Thus ab — ba = 0,
whence a? —b? = a® —ab+ba—b*> = (a+b)(a—b), for all a,b € R. Suppose, conversely,
that (a+b)(a—b) = a® —b%. Then a? — ab+ba — b*> = a® — b?. But then —ab+ba = 0,
whence ab = ba, for all a,b € R, and R is commutative.

Problem 5 1. Give an example of a ring R and elements a,b and ¢ in R such that
a#0, ab=ac, but b # c.

2. Find all the subdomains of Z.

Solution:



1. Take the ring R to be Z4 under addition and multiplication. Then 2-1 = 2 -3, but
1#3.

2. All the subdomains of Z have to contain the multiplicative identity 1. But every
subdomain that contains 1 is the entire domain since 1 is a generator for the additive
group of the integers. Therefore Z is the only subdomain of Z.



