FINAL EXAM - MATH 341

Monday, April 28, 2003

INSTRUCTOR: George Voutsadakis

This is a true/false exam. Read each question very carefully before answering. Each question is worth 1 point.

RULES:

- Rule Half a point will be subtracted for each wrong answer.
- + Rule If you have at least 60 out of the 90 questions answered correctly, 10 more points will be added to your score for free!!

GOOD LUCK!!

- 1. (a) i. If $f : A \to B$ and $g : B \to A$ are such that $g \circ f = 1_A$, then g must be 1-1. ii. If $f : A \to B$ is 1-1 and $g : B \to C$ is onto, then $g \circ f$ is onto.
 - iii. $f: A \to B$ is said to be invertible if there exists a $g: B \to A$ such that $g \circ f = 1_A$.
 - iv. $f: A \to B$ is invertible if and only if A and B have the same cardinality.
 - v. $|\mathbf{Z}| = |n\mathbf{Z}|.$
 - (b) i. A relation on a set A is a subset of A.
 - ii. A relation $R \subseteq A \times A$ is reflexive if, for all $a, b \in A, aRb$ implies bRa.
 - iii. If R is an equivalence relation on A, the equivalence class of $a \in A$ is $[a] = \{b \in A : aRb\}$.
 - iv. In \mathbb{R}^2 , the relation ~ defined by $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1y_2 = x_2y_1$ is an equivalence relation.
 - v. Given a function $f : A \to B$, the relation \sim on A defined by $a \sim b$ if and only if f(a) = f(b), for all $a, b \in A$, is an equivalence relation.
- 2. (a) i. A set with n elements has 2^{n-1} subsets.
 - ii. Given any integers a and $b \ge 1$, there exist unique integers q, r, such that a = qb + r.
 - iii. Two integers a and b are relatively prime if their only positive common divisor is 1.
 - iv. Let a, b, c be integers. If $c \setminus ab$, then $c \setminus a$ or $c \setminus b$.
 - v. For any $[r] \in U(n)$, there is an $[s] \in U(n)$, such that [r][s] = [1].
 - (b) i. The polar representation of -i is $-1(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$.
 - ii. Given any complex number $z = r(\cos \theta + i \sin \theta)$, for any positive integer n, we have $z^n = r^n(\cos n\theta + i \sin n\theta)$.

- iii. The inverse of z = 2+3i, $\frac{1}{z} = \frac{1}{2+3i}$ is not a complex number because it is not written in the form a + bi, with $a, b \in \mathbb{R}$.
- iv. The complex conjugate of $-\frac{1}{2} + 7i$ is $-2 + \frac{1}{7}i$.
- v. The equation $z^5 + 8i = 0$ has 5 complex roots.
- 3. (a) i. A matrix $A \in M(n, \mathbb{R})$ is invertible iff there exists a matrix $B \in M(n, \mathbb{R})$, such that A + B = B + A = 0.
 - ii. There exist matrices $A, B \in M(2, \mathbb{R})$, such that $AB = I_2$ but $BA \neq I_2$.
 - iii. For any $A, B \in M(2, \mathbb{R})$, we have $\det(AB) = \det(A)\det(B)$.
 - iv. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible, then $\det(A) \neq 0$ and $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} -a & c \\ b & -d \end{bmatrix}$. v. In $M(2, \mathbb{Z}_7)$, there is no matrix with determinant equal to 2.
 - (b) i. The *n*-th complex roots of unity form a group of order n-1 under complex multiplication.
 - ii. A group $\langle G, * \rangle$ is commutative if and only if a * (b * c) = (b * c) * a, for all $a, b, c \in G$.
 - iii. The dihedral group D_n has order 2n, if n is even and 2n 2 if n is odd.
 - iv. The rational numbers ${\bf Q}$ form a group under multiplication.
 - v. Let ϕ be the Euler ϕ -function. Then, for all primes p and positive integers k, $\phi(p^k) = p^k (1 - \frac{1}{p}).$
- 4. (a) i. A nonempty subset H of a group G is a subgroup of G iff $ab^{-1}c \in H$, for all $a, b, c \in H$.
 - ii. An equation of the form $a * x * b = c, a, b, c \in G$ always has a unique solution in a group $\langle G, * \rangle$.
 - iii. There is a finite group $\langle G, * \rangle$ with identity e and with an even number of elements, such that $a * a \neq e$, for every $e \neq a \in G$.
 - iv. There is a non trivial finite cyclic group that has a unique generator.
 - v. Let G be a group and $a \in G$. The centralizer of a in G consists of all those elements in G that commute with every element in G.
 - (b) i. Every group has at least one element of every order that divides the order of the group.
 - ii. There is at least one abelian group of every finite order > 0.
 - iii. Every group of order ≤ 4 is cyclic.
 - iv. All generators of \mathbf{Z}_{20} are prime numbers.
 - v. If G and G' are groups, then $G \cap G'$ is also a group.
- 5. (a) i. Every cyclic group of order > 2 has at least 2 distinct generators.
 - ii. There is a subgroup of a cyclic group that is not cyclic.

- iii. For every group G and every $a \in G$, a is contained in at least one proper subgroup of G.
- iv. The symmetric group S_{10} has 10 elements.
- v. S_n is not cyclic for any n.
- (b) i. A_3 is a commutative group.
 - ii. The odd permutations of S_7 form a subgroup of S_7 .
 - iii. Let G be a group and $H \leq G$. Then $|H| \setminus |G|$.
 - iv. Every group of prime order is abelian.
 - v. One cannot have left cosets of a finite subgroup of an infinite group.
- 6. (a) i. A subgroup of a group is a left coset of itself.
 - ii. For all positive integers a and n, $a^n \equiv a \mod n$.
 - iii. For any two groups G and G', there exists a homomorphism of G into G'.
 - iv. The image of a group of 6 elements under some homomorphism may have 4 elements.
 - v. A homomorphism of a group G into a group G' is 1-1 if and only if it has an empty kernel.
 - (b) i. A subgroup H of a group G is normal iff $gHg^{-1} \subseteq H$, for all $g \in H$.
 - ii. Every subgroup of an abelian group G is a normal subgroup of G.
 - iii. Every quotient group of a finite group is finite and any quotient group of an abelian group is abelian.
 - iv. Every quotient group of a non abelian group is non abelian.
 - v. The subgroup $\langle 6 \rangle + \langle 10 \rangle$ of \mathbf{Z}_{120} has 30 elements.
- 7. (a) i. Every quotient group of a non cyclic group is non cyclic.
 - ii. For any group homomorphism $f: G \to G'$ with kernel $K, G/K \cong f(G)$.
 - iii. The only isomorphism from \mathbf{Z}_3 into \mathbf{Z}_2 is the trivial one.
 - iv. \mathbf{Z}_8 has 4 automorphisms.
 - v. There exists an abelian group with at least two inner automorphisms.
 - (b) i. $\mathbf{Z}_2 \times \mathbf{Z}_4$ is isomorphic to \mathbf{Z}_8 .
 - ii. Every abelian group of prime order is cyclic.
 - iii. Every element of $\mathbf{Z}_4 \times \mathbf{Z}_8$ has order 8.
 - iv. The order of $\mathbf{Z}_{12} \times \mathbf{Z}_{15}$ is 60.
 - v. $\mathbf{Z}_3 \times \mathbf{Z}_8$ is isomorphic to S_4 .
- 8. (a) i. Every abelian group of prime power order is cyclic.
 - ii. Every finite abelian group divisible by 5 has a cyclic subgroup of order 5.
 - iii. There are 5 different abelian groups of order 360 up to isomorphism.

- iv. There are 6 different, up to isomorphism, abelian groups of order p^2q^2 , where p, q are primes.
- v. $\mathbf{Z}_{180} \times \mathbf{Z}_{42} \times \mathbf{Z}_{35}$ is isomorphic to $\mathbf{Z}_{315} \times \mathbf{Z}_{140} \times \mathbf{Z}_{6}$.
- (b) i. Every finite abelian group of order 6 has a cyclic subgroup of order 6.
 - ii. $\mathbf{Z}_{20} \times \mathbf{Z}_{70} \times \mathbf{Z}_{14}$ is isomorphic to $\mathbf{Z}_{28} \times \mathbf{Z}_{28} \times \mathbf{Z}_{25}$.
 - iii. A nonempty subset S of a ring R is a subring of R if and only if it is closed under both addition and multiplication.
 - iv. $S = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$ is a subring of IR under the usual operations of addition and multiplication.
 - v. $S = \{A \in M(2,\mathbb{R}) : \det(A) = 0\}$ is a subring of $M(2,\mathbb{R})$ under addition and multiplication.
- 9. (a) i. If R is a ring with $a, b, c \in R$ and $a \neq 0$, then ab = ac implies b = c.
 - ii. Let R be a ring. Then $(a + b)^2 = a^2 + 2ab + b^2$, for all $a, b \in R$.
 - iii. The direct product of two integral domains is an integral domain.
 - iv. A divisor of zero in a commutative ring with unity can have no multiplicative inverse. v. $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ is a zero-divisor in $M(2, \mathbb{Z})$.
 - (b) i. 7 is a zero-divisor in \mathbf{Z}_{48} .
 - ii. The cancellation law holds in the ring \mathbf{Z}_{15} .
 - iii. $\mathbf{Z}[i]$ is an integral domain.
 - iv. $M(2, \mathbb{R})$ is an integral domain.
 - v. The equation $a^2 = a$ has exactly two solutions in all commutative rings with identity.