HOMEWORK 1 - MATH 341 DUE DATE: Tuesday, January 28 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work.

GOOD LUCK!!

- 1. (a) Is the map $f : \mathbf{Q}^* \to \mathbf{Q}^*$, defined by $f(\frac{n}{m}) = \frac{m}{n}$, where \mathbf{Q}^* is the set of nonzero rational numbers, a one to one map?
 - (b) Is the map $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2 4$, an onto map?
 - (c) Let $f : \{1, 2, ..., n\} \to \{1, 2, ..., n\}$, where f(i) = i + 2, for $1 \le i \le n 2$, and f(n 1) = 1 and f(n) = 2 invertible?
 - (d) Let $f: A \to B$ and $g: B \to C$ be two maps. Show that
 - (i) If $g \circ f$ is onto, then g must be onto.
 - (ii) If $g \circ f$ is one-to-one, then f must be one-to-one.
 - (e) Show that $|\mathbf{Z} \times \mathbf{Z}| = |2\mathbf{Z} \times 2\mathbf{Z}|$.
- 2. (a) Determine whether the following relations are equivalent relations and, if so, describe the equivalence classes:
 - (i) In IR, $a \sim b$ if and only if |a| = |b|.
 - (ii) In IR, $a \sim b$ if and only if $|a b| \leq 1$.
 - (iii) In $\mathbb{R} \times \mathbb{R}$, $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.
 - (b) Fix an integer n and define on \mathbf{Z} the relation $a \sim b$ if and only if a b is divisible by n. Show that this is an equivalence relation on \mathbf{Z} and describe the equivalence classes.
 - (c) Let $f: S \to T$ be any map and define the relation \sim on S by letting $a \sim b$ if and only if f(a) = f(b). Show that \sim is an equivalence relation on S.
- 3. (a) The Fibonacci sequence $1, 1, 2, 3, 5, 8, 13, \ldots$ is defined by $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n$, for $n \ge 1$. Show that $(F_{n+1})^2 F_n F_{n+2} = (-1)^n$.
 - (b) Use the Euclidean algorithm to calculate gcd(52, 135) and write it as a linear combination of 52 and 135.

- (c) Show that if gcd(n, r) = 1, then there exists an integer s such that gcd(n, s) = 1 and $rs \equiv 1 \mod n$.
- (d) Write the multiplication table mod 7 of U(7) and mod 8 of U(8).
- 4. (a) Calculate the value of i^{38} and express your answer in the form $a + bi, a, b \in \mathbb{R}$.
 - (b) Calculate the value of $(1+i)^7$ and express your answer in the form $a + bi, a, b \in \mathbb{R}$.
 - (c) Find all the solutions to the equation $z^4 = -1$.
- 5. (a) Perform the operation $\begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix} \begin{bmatrix} 2i & i \\ -i & 1 \end{bmatrix}$ in $M(2, \mathbf{C})$.
 - (b) Calculate the determinant of $\begin{bmatrix} 5 & 1 \\ 2 & 2 \end{bmatrix}$ in \mathbf{Z}_7 .
 - (c) Determine whether $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is invertible in $M(2, \mathbf{C})$ and, if so, calculate its inverse.
 - (d) Determine whether $\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$ is invertible in $M(2, \mathbb{Z}_5)$ and, if so, calculate its inverse.
 - (e) Find all the invertible matrices in $M(2, \mathbb{Z}_2)$.