HOMEWORK 1: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 (a) Is the map f : Q" — QF, defined by f(;-) = 7, where Q" is the set of
nonzero rational numbers, a one to one map?

(b) Is the map f: IR — R, defined by f(x) = x? — 4, an onto map?

(c) Let f :{1,2,...,n} — {1,2,...,n}, where f(i) =i+ 2, for 1 < i <n—2, and
fn—=1)=1 and f(n) = 2 invertible?

(d) Let f: A— B and g : B — C be two maps. Show that

(i) If go f is onto, then g must be onto.

(ii) If go f is one-to-one, then f must be one-to-one.
(e) Show that |Z x Z| = |2Z x 2Z)|.
Solution:

(a) The map is one to one: Let % € Q*. Then f() = £ implies ™ = % implies that
D
q’

q
()t = (%)* implies

(b) f:IR — IR, defined by f(z) = 22 — 4, is not onto, since 22 > 0 implies 2% — 4 > —4,
i.e., f(x) > —4. Hence, for instance, —5 € f(IR).

(c) The given function is invertible since one very easily verifies that it is one to one and
onto.

(d) (i) Suppose that go f : A — C is onto. To show that g : B — C must be onto,
let ¢ € C. Since g o f is onto, there exists a € A, such that ¢ = (g o f)(a), i.e.,
¢ = ¢g(f(a)). But then, there exists b = f(a) € B, such that ¢ = g(b), which
proves that g is onto.

(ii) Suppose that go f: A — C is one to one. To show that f : A — B must be one
to one, let a1, a2 € A, such that f(ai1) = f(az). Then g(f(a1)) = g(f(az2)). Hence
(go f)(a1) = (go f)(az). Now, since go f : A — C' is one to one, a; = ag. Hence
f must be one to one as well.

(e) To show that |Z x Z| = |2Z x 2Z|, it suffices to exhibit a one to one and onto function
f:Z xZ — 27 x 27Z. Define f by

f(m,n) = (2m,2n), for all (m,n) € Z x Z.

f is onto by the definition of 2Z x 2Z and it is one to one, since, for all (m,n), (p,q) €
Z xZ, f(m,n) = f(p,q) implies (2m,2n) = (2p,2q), whence 2m = 2p and 2n = 2gq,
and, therefore, m = p and n = ¢, i.e., (m,n) = (p,q). |



Problem 2 (a) Determine whether the following relations are equivalent relations and,
if so, describe the equivalence classes:
(i) In R, a ~ b if and only if |a] = |b)|.
(i) In R, a ~ b if and only if |a — b| < 1.
(i) In R x R, (z1,y1) ~ (v2,%2) if and only if 22 + y? = x3 + 3.

(b) Fix an integer n and define on Z the relation a ~ b if and only if a — b is divisible by
n. Show that this is an equivalence relation on Z and describe the equivalence classes.

(c) Let f : S — T be any map and define the relation ~ on S by letting a ~ b if and only
if f(a) = f(b). Show that ~ is an equivalence relation on S.

Solution:
(a) (i) a ~ asince |a| = |al, hence ~ is reflexive. a ~ b implies |a| = |b| whence |b| = |al,
i.e., b ~ a. Thus, ~ is also symmetric. Finally, a ~ b and b ~ ¢ imply |a| = |b]
and |b| = |¢|, whence |a| = |c¢|. Therefore ~ is also transitive. Thus, ~ is an

equivalence relation on IR. To describe the equivalence classes, let a € IR. Then

[a] = {zreR:z~a}
fr R [o] = [af}
= {zeR:z=—-aorx=a}

= {—a,a}

Hence the equivalence classes consist of all doubletons consisting of the reals and
their negatives.

(ii) This is not an equivalence relation because it fails to be transitive. For instance,
0~1and 1~ 2but0%2.

(iii) (z,y) ~ (z,y) since 22 + y? = 2% + y?, hence ~ is reflexive. (x1,y1) ~ (72, y2)
implies #2 + y? = 23 + y3 whence 23 + y3 = 27 + ¢2, ie., (v2,92) ~ (z1,1)-
Thus, ~ is also symmetric. Finally, (z1,y1) ~ (z2,y2) and (z2,y2) ~ (z3,y3)
imply 2% + 32 = 23 + y3 and 23 + y3 = 23 + y3, whence 22 + y3 = 23 + o3,
ie., (r1,y1) ~ (23,y3). Therefore ~ is also transitive. Thus, ~ is an equivalence
relation on IR?. To describe the equivalence classes, let (a,b) € IR%. Then

[(a,0)] = {(z,9) € R2: (z,y) ~ (a,b)}
= {(m,y) ER22I2+y2 :a2+b2}

Hence the equivalence classes are all circles centered at the origin.

(b) a ~ asince 0 = a—a is divisible by n. So ~ is reflexive. a ~ b implies a —b is divisible
by n, whence b — a = —(a — b) is also divisible by n, and, therefore b ~ a, i.e., ~ is
symmetric. Finally, if a ~ b and b ~ ¢, Then, both a — b and b — ¢ are divisible by n,



whence a —c = (a—b) + (b—¢) is divisible by n. Hence a ~ ¢ and ~ is also transitive.
Thus ~ is an equivalence relation on Z. Suppose that a € Z. Then

[a] = {z€Z:z~a}
= {x €Z:z —ais divisible by n}
= {z€Z:x—a=knkeZ}
= {a+kn:keZ}.

Thus, the equivalence class of a consists of all integers that leave the same remainder
as a when divided by n. Hence there are n distinct equivalence classes corresponding
to the different remainders 0,1,...,n — 1 of the division by n.

(¢) a ~ a since f(a) = f(a). So ~ is reflexive. a ~ b implies f(a) = f(b), whence
f(b) = f(a), and, therefore b ~ a, i.e., ~ is symmetric. Finally, if a ~ b and b ~ ¢,
Then, both f(a) = f(b) and f(b) = f(c), whence f(a) = f(c), i.e., a ~ ¢ and ~ is also
transitive. Thus ~ is an equivalence relation on S. [

Problem 3 (a) The Fibonacci sequence 1,1,2,3,5,8 13,... is defined by F} = Fy =
1, Fhio = Fuy1 + Fy, forn > 1. Show that (Fpy1)? — FFpi2 = (—1)™.

(b) Use the Euclidean algorithm to calculate ged(52,135) and write it as a linear combi-
nation of 52 and 135.

(¢) Show that if ged(n,r) = 1, then there exists an integer s such that ged(n,s) =1 and
rs =1 mod n.

(d) Write the multiplication table mod 7 of U(7) and mod 8 of U(8).

Solution:

(a) We use induction on n. For the base of the induction, let n = 1. Then
F} -FF3=1"-1-2=-1=(-1).

Now, for the inductive step, suppose that the relation is true for n = k, i.e., that
(Fiy1)? — FpFjy2 = (—1)F. We will show that the relation is true for n = k 4+ 1:

(Fri2)? — Fyp1Frrs = (Feg1 + Fi)? — Foo1(Fego + Fipn)
F2 4 2F 1 Fy+ F} — Frp1 Fryo — P
F? + 2F;Fyy1 — Fry1Figo

F2 4 2FFyi1 — Fip1(Frg1 + F)
F2 +2F,Fyq — F2 | — Frp1 Fr
FZ + FpFr — F2

—F?2  + Fi(Fr1 + Fy)

—F2 4 FiFryo

—(Fiyy — FrFry2)

= —(-1)*

= (=DFH



(b) We have
135 = 2-52+31

92 = 1-31+21
31 = 1-21410
21 = 2-10+1
10 = 10-140

Hence ged(52,135) = 1. Following the steps above in the reverse direction one finds
that 1 =13-52 —5-135.

(¢) Since ged(n,r) = 1, there exist t, s € Z, such that tn + sr = 1. We claim that this s
satisfies the requirements. First
rs = 1—tn
=1

Furthermore, if d = ged(n, s), then, there exist z,y € Z, such that n = dz and s = dy.
Then tdx + rdy = 1, whence (tz + ry)d = 1, i.e., d is a positive divisor of 1, whence
d =1 and ged(n,s) = 1.

(d) We have U(7) ={1,2,3,4,5,6} and U(8) = {1,3,5,7} and

/123 456
1/1 23 456 |13 5 7
202 46135 1[1 3 5 7
31362514 3|3 175
414152 6 3 5|5 7 1 3
5|53 16 4 2 7|75 3 1
6|6 54 3 2 1

Problem 4 (a) Calculate the value of i%® and express your answer in the form a +
bi,a,b € R.

(b) Calculate the value of (1 +14)7 and express your answer in the form a + bi,a,b € IR.
(c) Find all the solutions to the equation z* = —1.

Solution:
(a) %8 = #4942 — ()92 = 19(—1) = —1.

(b) We have 1+ i = ﬁ(g + z@) = V2(cos T + isin T). Therefore, by De Moivre’s

formula

S



(c) Let z =r(cos¢ + isin¢). Then
24 = r4(cos (4¢) + isin (4¢)) = cosm + isin .

Thus r = 1 and 4¢ = 7 + 2km, whence ¢ = 7 + k7. The four different solutions are
obtained by setting k = 0,1, 2,3. We have
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Problem 5 (a) Perform the operation [ 1 ! } [ 21. i ] in M(2,C).

(b) Calculate the determinant of [ g ; ] in Zr.

cos —sinf

(c) Determine whether [ sind  cosd

} is invertible in M (2, C) and, if so, calculate its

verse.

(d) Determine whether [ _43 5

] is invertible in M(2,Zs) and, if so, calculate its in-

verse.

(e) Find all the invertible matrices in M (2,Zs).

Solution:

(a) 1 4 20 4 | | 1420 2
7 —1 — 1| | 247 =2
5 1

(b)‘2 2’—5~2—1-2—3—2—1.

cos —sinf
sinf cosf

cos —sinf
sin@ cosf

‘ = cos2 0 +sin?0 =1 # 0. Hence, [ } is invertible and

sinf  cosf —sinf cosé sin (—60) cos(—0)

{cos@ —sinf ]1 _ [ cosf sin ] _ [ cos(—0) —sin (—0) ]



(d) ‘ _3 9 ‘ =4-2-1(-3) =3—-2=1 # 0. Hence [ _43 ; ] is invertible and its
. 4 17" 24
inverse is 3 9 =13 41

(e) An easy analysis of the determinant of ad — bc of

a b

d ] with a, b, c,d € Zs shows

that it is nonzero for the following six matrices
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