HOMEWORK 1: SOLUTIONS - MATH 341 INSTRUCTOR: George Voutsadakis

- **Problem 1** (a) Is the map $f : \mathbf{Q}^* \to \mathbf{Q}^*$, defined by $f(\frac{n}{m}) = \frac{m}{n}$, where \mathbf{Q}^* is the set of nonzero rational numbers, a one to one map?
 - (b) Is the map $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2 4$, an onto map?
 - (c) Let $f : \{1, 2, ..., n\} \to \{1, 2, ..., n\}$, where f(i) = i + 2, for $1 \le i \le n 2$, and f(n-1) = 1 and f(n) = 2 invertible?
 - (d) Let $f: A \to B$ and $g: B \to C$ be two maps. Show that
 - (i) If $g \circ f$ is onto, then g must be onto.
 - (ii) If $g \circ f$ is one-to-one, then f must be one-to-one.
 - (e) Show that $|\mathbf{Z} \times \mathbf{Z}| = |2\mathbf{Z} \times 2\mathbf{Z}|$.

Solution:

- (a) The map is one to one: Let $\frac{n}{m}, \frac{p}{q} \in \mathbf{Q}^*$. Then $f(\frac{n}{m}) = \frac{p}{q}$ implies $\frac{m}{n} = \frac{q}{p}$ implies that $(\frac{m}{n})^{-1} = (\frac{q}{p})^{-1}$ implies $\frac{n}{m} = \frac{p}{q}$.
- (b) $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2 4$, is not onto, since $x^2 \ge 0$ implies $x^2 4 \ge -4$, i.e., $f(x) \ge -4$. Hence, for instance, $-5 \notin f(\mathbb{R})$.
- (c) The given function is invertible since one very easily verifies that it is one to one and onto.
- (d) (i) Suppose that $g \circ f : A \to C$ is onto. To show that $g : B \to C$ must be onto, let $c \in C$. Since $g \circ f$ is onto, there exists $a \in A$, such that $c = (g \circ f)(a)$, i.e., c = g(f(a)). But then, there exists $b = f(a) \in B$, such that c = g(b), which proves that g is onto.
 - (ii) Suppose that $g \circ f : A \to C$ is one to one. To show that $f : A \to B$ must be one to one, let $a_1, a_2 \in A$, such that $f(a_1) = f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$. Hence $(g \circ f)(a_1) = (g \circ f)(a_2)$. Now, since $g \circ f : A \to C$ is one to one, $a_1 = a_2$. Hence f must be one to one as well.
- (e) To show that $|\mathbf{Z} \times \mathbf{Z}| = |2\mathbf{Z} \times 2\mathbf{Z}|$, it suffices to exhibit a one to one and onto function $f : \mathbf{Z} \times \mathbf{Z} \to 2\mathbf{Z} \times 2\mathbf{Z}$. Define f by

$$f(m,n) = (2m, 2n), \text{ for all } (m,n) \in \mathbb{Z} \times \mathbb{Z}.$$

f is onto by the definition of $2\mathbf{Z} \times 2\mathbf{Z}$ and it is one to one, since, for all $(m, n), (p, q) \in \mathbf{Z} \times \mathbf{Z}, f(m, n) = f(p, q)$ implies (2m, 2n) = (2p, 2q), whence 2m = 2p and 2n = 2q, and, therefore, m = p and n = q, i.e., (m, n) = (p, q).

- **Problem 2** (a) Determine whether the following relations are equivalent relations and, if so, describe the equivalence classes:
 - (i) In \mathbb{R} , $a \sim b$ if and only if |a| = |b|.
 - (ii) In \mathbb{R} , $a \sim b$ if and only if $|a b| \leq 1$.
 - (iii) In $\mathbb{R} \times \mathbb{R}$, $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.
 - (b) Fix an integer n and define on \mathbf{Z} the relation $a \sim b$ if and only if a b is divisible by n. Show that this is an equivalence relation on \mathbf{Z} and describe the equivalence classes.
 - (c) Let $f: S \to T$ be any map and define the relation \sim on S by letting $a \sim b$ if and only if f(a) = f(b). Show that \sim is an equivalence relation on S.

Solution:

(a) (i) $a \sim a$ since |a| = |a|, hence \sim is reflexive. $a \sim b$ implies |a| = |b| whence |b| = |a|, i.e., $b \sim a$. Thus, \sim is also symmetric. Finally, $a \sim b$ and $b \sim c$ imply |a| = |b|and |b| = |c|, whence |a| = |c|. Therefore \sim is also transitive. Thus, \sim is an equivalence relation on \mathbb{R} . To describe the equivalence classes, let $a \in \mathbb{R}$. Then

$$[a] = \{x \in \mathbb{R} : x \sim a\} \\ = \{x \in \mathbb{R} : |x| = |a|\} \\ = \{x \in \mathbb{R} : x = -a \text{ or } x = a\} \\ = \{-a, a\}$$

Hence the equivalence classes consist of all doubletons consisting of the reals and their negatives.

- (ii) This is not an equivalence relation because it fails to be transitive. For instance, $0 \sim 1$ and $1 \sim 2$ but $0 \not\sim 2$.
- (iii) $(x, y) \sim (x, y)$ since $x^2 + y^2 = x^2 + y^2$, hence \sim is reflexive. $(x_1, y_1) \sim (x_2, y_2)$ implies $x_1^2 + y_1^2 = x_2^2 + y_2^2$ whence $x_2^2 + y_2^2 = x_1^2 + y_1^2$, i.e., $(x_2, y_2) \sim (x_1, y_1)$. Thus, \sim is also symmetric. Finally, $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$ imply $x_1^2 + y_1^2 = x_2^2 + y_2^2$ and $x_2^2 + y_2^2 = x_3^2 + y_3^2$, whence $x_1^2 + y_1^2 = x_3^2 + y_3^2$, i.e., $(x_1, y_1) \sim (x_3, y_3)$. Therefore \sim is also transitive. Thus, \sim is an equivalence relation on \mathbb{R}^2 . To describe the equivalence classes, let $(a, b) \in \mathbb{R}^2$. Then

$$\begin{aligned} [(a,b)] &= \{(x,y) \in \mathbb{R}^2 : (x,y) \sim (a,b)\} \\ &= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = a^2 + b^2\} \end{aligned}$$

Hence the equivalence classes are all circles centered at the origin.

(b) $a \sim a$ since 0 = a - a is divisible by n. So \sim is reflexive. $a \sim b$ implies a - b is divisible by n, whence b - a = -(a - b) is also divisible by n, and, therefore $b \sim a$, i.e., \sim is symmetric. Finally, if $a \sim b$ and $b \sim c$, Then, both a - b and b - c are divisible by n,

whence a - c = (a - b) + (b - c) is divisible by n. Hence $a \sim c$ and \sim is also transitive. Thus \sim is an equivalence relation on **Z**. Suppose that $a \in \mathbf{Z}$. Then

$$[a] = \{x \in \mathbf{Z} : x \sim a\}$$

= $\{x \in \mathbf{Z} : x - a \text{ is divisible by } n\}$
= $\{x \in \mathbf{Z} : x - a = kn, k \in \mathbf{Z}\}$
= $\{a + kn : k \in \mathbf{Z}\}.$

Thus, the equivalence class of a consists of all integers that leave the same remainder as a when divided by n. Hence there are n distinct equivalence classes corresponding to the different remainders $0, 1, \ldots, n-1$ of the division by n.

- (c) $a \sim a$ since f(a) = f(a). So \sim is reflexive. $a \sim b$ implies f(a) = f(b), whence f(b) = f(a), and, therefore $b \sim a$, i.e., \sim is symmetric. Finally, if $a \sim b$ and $b \sim c$, Then, both f(a) = f(b) and f(b) = f(c), whence f(a) = f(c), i.e., $a \sim c$ and \sim is also transitive. Thus \sim is an equivalence relation on S.
- **Problem 3** (a) The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... is defined by $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n$, for $n \ge 1$. Show that $(F_{n+1})^2 F_n F_{n+2} = (-1)^n$.
 - (b) Use the Euclidean algorithm to calculate gcd(52, 135) and write it as a linear combination of 52 and 135.
 - (c) Show that if gcd(n,r) = 1, then there exists an integer s such that gcd(n,s) = 1 and $rs \equiv 1 \mod n$.
 - (d) Write the multiplication table mod 7 of U(7) and mod 8 of U(8).

Solution:

(a) We use induction on n. For the base of the induction, let n = 1. Then

$$F_2^2 - F_1F_3 = 1^2 - 1 \cdot 2 = -1 = (-1)^1.$$

Now, for the inductive step, suppose that the relation is true for n = k, i.e., that $(F_{k+1})^2 - F_k F_{k+2} = (-1)^k$. We will show that the relation is true for n = k + 1:

$$(F_{k+2})^2 - F_{k+1}F_{k+3} = (F_{k+1} + F_k)^2 - F_{k+1}(F_{k+2} + F_{k+1})$$

$$= F_{k+1}^2 + 2F_{k+1}F_k + F_k^2 - F_{k+1}F_{k+2} - F_{k+1}^2$$

$$= F_k^2 + 2F_kF_{k+1} - F_{k+1}F_{k+2}$$

$$= F_k^2 + 2F_kF_{k+1} - F_{k+1}^2 - F_{k+1}F_k$$

$$= F_k^2 + F_kF_{k+1} - F_{k+1}^2$$

$$= -F_{k+1}^2 + F_k(F_{k+1} + F_k)$$

$$= -F_{k+1}^2 + F_kF_{k+2}$$

$$= -(F_{k+1}^2 - F_kF_{k+2})$$

$$= -(-1)^k$$

$$= (-1)^{k+1}$$

(b) We have

Hence gcd(52, 135) = 1. Following the steps above in the reverse direction one finds that $1 = 13 \cdot 52 - 5 \cdot 135$.

(c) Since gcd(n, r) = 1, there exist $t, s \in \mathbb{Z}$, such that tn + sr = 1. We claim that this s satisfies the requirements. First

$$\begin{array}{rcl} rs &=& 1-tn \\ &\equiv& 1 \end{array}$$

Furthermore, if $d = \gcd(n, s)$, then, there exist $x, y \in \mathbb{Z}$, such that n = dx and s = dy. Then tdx + rdy = 1, whence (tx + ry)d = 1, i.e., d is a positive divisor of 1, whence d = 1 and $\gcd(n, s) = 1$.

(d) We have $U(7) = \{1, 2, 3, 4, 5, 6\}$ and $U(8) = \{1, 3, 5, 7\}$ and

•	1	2	3	4	5	6					
1	1	2	3	4	5	6	•	1	3	5	7
2	2	4	6	1	3	5				5	
					1		3	3	1	7	5
4	4	1	5	2	6	3				1	
					4		7	7	5	3	1
6	6	5	4	3	2	1					

- **Problem 4** (a) Calculate the value of i^{38} and express your answer in the form $a + bi, a, b \in \mathbb{R}$.
 - (b) Calculate the value of $(1+i)^7$ and express your answer in the form $a + bi, a, b \in \mathbb{R}$.
 - (c) Find all the solutions to the equation $z^4 = -1$.

Solution:

- (a) $i^{38} = i^{4 \cdot 9 + 2} = (i^4)^9 i^2 = 1^9 (-1) = -1.$
- (b) We have $1 + i = \sqrt{2}(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}) = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$. Therefore, by De Moivre's formula

$$(1+i)^{7} = [\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})]^{7}$$

= $\sqrt{2}^{7}(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4})$
= $8\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))$
= $8\sqrt{2}(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2})$
= $8 - i8.$

(c) Let $z = r(\cos \phi + i \sin \phi)$. Then

$$z^{4} = r^{4}(\cos(4\phi) + i\sin(4\phi)) = \cos\pi + i\sin\pi.$$

Thus r = 1 and $4\phi = \pi + 2k\pi$, whence $\phi = \frac{\pi}{4} + k\frac{\pi}{2}$. The four different solutions are obtained by setting k = 0, 1, 2, 3. We have

Problem 5 (a) Perform the operation $\begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix} \begin{bmatrix} 2i & i \\ -i & 1 \end{bmatrix}$ in $M(2, \mathbf{C})$.

- (b) Calculate the determinant of $\begin{bmatrix} 5 & 1 \\ 2 & 2 \end{bmatrix}$ in \mathbf{Z}_7 .
- (c) Determine whether $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is invertible in $M(2, \mathbb{C})$ and, if so, calculate its inverse.
- (d) Determine whether $\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$ is invertible in $M(2, \mathbb{Z}_5)$ and, if so, calculate its inverse.
- (e) Find all the invertible matrices in $M(2, \mathbb{Z}_2)$.

Solution:

(a)
$$\begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix} \begin{bmatrix} 2i & i \\ -i & 1 \end{bmatrix} = \begin{bmatrix} 1+2i & 2i \\ -2+i & -2 \end{bmatrix}$$

(b)
$$\begin{vmatrix} 5 & 1 \\ 2 & 2 \end{vmatrix} = 5 \cdot 2 - 1 \cdot 2 = 3 - 2 = 1.$$

(c)
$$\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} = \cos^2\theta + \sin^2\theta = 1 \neq 0$$
. Hence, $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ is invertible and $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$.

(d)
$$\begin{vmatrix} 4 & 1 \\ -3 & 2 \end{vmatrix} = 4 \cdot 2 - 1(-3) = 3 - 2 = 1 \neq 0$$
. Hence $\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$ is invertible and its inverse is $\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 4 \\ 3 & 4 \end{bmatrix}$.

(e) An easy analysis of the determinant of ad - bc of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $a, b, c, d \in \mathbb{Z}_2$ shows that it is nonzero for the following six matrices

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$