
HOMEWORK 1: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 (a) Is the map f : Q∗ → Q∗, defined by f( n
m) = m

n , where Q∗ is the set of
nonzero rational numbers, a one to one map?

(b) Is the map f : IR → IR, defined by f(x) = x2 − 4, an onto map?

(c) Let f : {1, 2, . . . , n} → {1, 2, . . . , n}, where f(i) = i + 2, for 1 ≤ i ≤ n − 2, and
f(n− 1) = 1 and f(n) = 2 invertible?

(d) Let f : A → B and g : B → C be two maps. Show that

(i) If g ◦ f is onto, then g must be onto.

(ii) If g ◦ f is one-to-one, then f must be one-to-one.

(e) Show that |Z× Z| = |2Z× 2Z|.
Solution:

(a) The map is one to one: Let n
m , p

q ∈ Q∗. Then f( n
m) = p

q implies m
n = q

p implies that
(m

n )−1 = ( q
p)−1 implies n

m = p
q .

(b) f : IR → IR, defined by f(x) = x2 − 4, is not onto, since x2 ≥ 0 implies x2 − 4 ≥ −4,
i.e., f(x) ≥ −4. Hence, for instance, −5 6∈ f(IR).

(c) The given function is invertible since one very easily verifies that it is one to one and
onto.

(d) (i) Suppose that g ◦ f : A → C is onto. To show that g : B → C must be onto,
let c ∈ C. Since g ◦ f is onto, there exists a ∈ A, such that c = (g ◦ f)(a), i.e.,
c = g(f(a)). But then, there exists b = f(a) ∈ B, such that c = g(b), which
proves that g is onto.

(ii) Suppose that g ◦ f : A → C is one to one. To show that f : A → B must be one
to one, let a1, a2 ∈ A, such that f(a1) = f(a2). Then g(f(a1)) = g(f(a2)). Hence
(g ◦ f)(a1) = (g ◦ f)(a2). Now, since g ◦ f : A → C is one to one, a1 = a2. Hence
f must be one to one as well.

(e) To show that |Z×Z| = |2Z×2Z|, it suffices to exhibit a one to one and onto function
f : Z× Z → 2Z× 2Z. Define f by

f(m,n) = (2m, 2n), for all (m,n) ∈ Z× Z.

f is onto by the definition of 2Z×2Z and it is one to one, since, for all (m,n), (p, q) ∈
Z × Z, f(m, n) = f(p, q) implies (2m, 2n) = (2p, 2q), whence 2m = 2p and 2n = 2q,
and, therefore, m = p and n = q, i.e., (m,n) = (p, q). ¥
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Problem 2 (a) Determine whether the following relations are equivalent relations and,
if so, describe the equivalence classes:

(i) In IR, a ∼ b if and only if |a| = |b|.
(ii) In IR, a ∼ b if and only if |a− b| ≤ 1.

(iii) In IR× IR, (x1, y1) ∼ (x2, y2) if and only if x2
1 + y2

1 = x2
2 + y2

2.

(b) Fix an integer n and define on Z the relation a ∼ b if and only if a− b is divisible by
n. Show that this is an equivalence relation on Z and describe the equivalence classes.

(c) Let f : S → T be any map and define the relation ∼ on S by letting a ∼ b if and only
if f(a) = f(b). Show that ∼ is an equivalence relation on S.

Solution:

(a) (i) a ∼ a since |a| = |a|, hence ∼ is reflexive. a ∼ b implies |a| = |b| whence |b| = |a|,
i.e., b ∼ a. Thus, ∼ is also symmetric. Finally, a ∼ b and b ∼ c imply |a| = |b|
and |b| = |c|, whence |a| = |c|. Therefore ∼ is also transitive. Thus, ∼ is an
equivalence relation on IR. To describe the equivalence classes, let a ∈ IR. Then

[a] = {x ∈ IR : x ∼ a}
= {x ∈ IR : |x| = |a|}
= {x ∈ IR : x = −a or x = a}
= {−a, a}

Hence the equivalence classes consist of all doubletons consisting of the reals and
their negatives.

(ii) This is not an equivalence relation because it fails to be transitive. For instance,
0 ∼ 1 and 1 ∼ 2 but 0 6∼ 2.

(iii) (x, y) ∼ (x, y) since x2 + y2 = x2 + y2, hence ∼ is reflexive. (x1, y1) ∼ (x2, y2)
implies x2

1 + y2
1 = x2

2 + y2
2 whence x2

2 + y2
2 = x2

1 + y2
1, i.e., (x2, y2) ∼ (x1, y1).

Thus, ∼ is also symmetric. Finally, (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3)
imply x2

1 + y2
1 = x2

2 + y2
2 and x2

2 + y2
2 = x2

3 + y2
3, whence x2

1 + y2
1 = x2

3 + y2
3,

i.e., (x1, y1) ∼ (x3, y3). Therefore ∼ is also transitive. Thus, ∼ is an equivalence
relation on IR2. To describe the equivalence classes, let (a, b) ∈ IR2. Then

[(a, b)] = {(x, y) ∈ IR2 : (x, y) ∼ (a, b)}
= {(x, y) ∈ IR2 : x2 + y2 = a2 + b2}

Hence the equivalence classes are all circles centered at the origin.

(b) a ∼ a since 0 = a−a is divisible by n. So ∼ is reflexive. a ∼ b implies a−b is divisible
by n, whence b − a = −(a − b) is also divisible by n, and, therefore b ∼ a, i.e., ∼ is
symmetric. Finally, if a ∼ b and b ∼ c, Then, both a− b and b− c are divisible by n,
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whence a− c = (a− b)+ (b− c) is divisible by n. Hence a ∼ c and ∼ is also transitive.
Thus ∼ is an equivalence relation on Z. Suppose that a ∈ Z. Then

[a] = {x ∈ Z : x ∼ a}
= {x ∈ Z : x− a is divisible by n}
= {x ∈ Z : x− a = kn, k ∈ Z}
= {a + kn : k ∈ Z}.

Thus, the equivalence class of a consists of all integers that leave the same remainder
as a when divided by n. Hence there are n distinct equivalence classes corresponding
to the different remainders 0, 1, . . . , n− 1 of the division by n.

(c) a ∼ a since f(a) = f(a). So ∼ is reflexive. a ∼ b implies f(a) = f(b), whence
f(b) = f(a), and, therefore b ∼ a, i.e., ∼ is symmetric. Finally, if a ∼ b and b ∼ c,
Then, both f(a) = f(b) and f(b) = f(c), whence f(a) = f(c), i.e., a ∼ c and ∼ is also
transitive. Thus ∼ is an equivalence relation on S. ¥

Problem 3 (a) The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . is defined by F1 = F2 =
1, Fn+2 = Fn+1 + Fn, for n ≥ 1. Show that (Fn+1)2 − FnFn+2 = (−1)n.

(b) Use the Euclidean algorithm to calculate gcd(52, 135) and write it as a linear combi-
nation of 52 and 135.

(c) Show that if gcd(n, r) = 1, then there exists an integer s such that gcd(n, s) = 1 and
rs ≡ 1 mod n.

(d) Write the multiplication table mod 7 of U(7) and mod 8 of U(8).

Solution:

(a) We use induction on n. For the base of the induction, let n = 1. Then

F 2
2 − F1F3 = 12 − 1 · 2 = −1 = (−1)1.

Now, for the inductive step, suppose that the relation is true for n = k, i.e., that
(Fk+1)2 − FkFk+2 = (−1)k. We will show that the relation is true for n = k + 1:

(Fk+2)2 − Fk+1Fk+3 = (Fk+1 + Fk)2 − Fk+1(Fk+2 + Fk+1)
= F 2

k+1 + 2Fk+1Fk + F 2
k − Fk+1Fk+2 − F 2

k+1

= F 2
k + 2FkFk+1 − Fk+1Fk+2

= F 2
k + 2FkFk+1 − Fk+1(Fk+1 + Fk)

= F 2
k + 2FkFk+1 − F 2

k+1 − Fk+1Fk

= F 2
k + FkFk+1 − F 2

k+1

= −F 2
k+1 + Fk(Fk+1 + Fk)

= −F 2
k+1 + FkFk+2

= −(F 2
k+1 − FkFk+2)

= −(−1)k

= (−1)k+1
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(b) We have
135 = 2 · 52 + 31
52 = 1 · 31 + 21
31 = 1 · 21 + 10
21 = 2 · 10 + 1
10 = 10 · 1 + 0

Hence gcd(52, 135) = 1. Following the steps above in the reverse direction one finds
that 1 = 13 · 52− 5 · 135.

(c) Since gcd(n, r) = 1, there exist t, s ∈ Z, such that tn + sr = 1. We claim that this s
satisfies the requirements. First

rs = 1− tn
≡ 1

Furthermore, if d = gcd(n, s), then, there exist x, y ∈ Z, such that n = dx and s = dy.
Then tdx + rdy = 1, whence (tx + ry)d = 1, i.e., d is a positive divisor of 1, whence
d = 1 and gcd(n, s) = 1.

(d) We have U(7) = {1, 2, 3, 4, 5, 6} and U(8) = {1, 3, 5, 7} and

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

¥
Problem 4 (a) Calculate the value of i38 and express your answer in the form a +

bi, a, b ∈ IR.

(b) Calculate the value of (1 + i)7 and express your answer in the form a + bi, a, b ∈ IR.

(c) Find all the solutions to the equation z4 = −1.

Solution:

(a) i38 = i4·9+2 = (i4)9i2 = 19(−1) = −1.

(b) We have 1 + i =
√

2(
√

2
2 + i

√
2

2 ) =
√

2(cos π
4 + i sin π

4 ). Therefore, by De Moivre’s
formula

(1 + i)7 = [
√

2(cos π
4 + i sin π

4 )]7

=
√

2
7
(cos 7π

4 + i sin 7π
4 )

= 8
√

2(cos (−π
4 ) + i sin (−π

4 ))
= 8

√
2(
√

2
2 − i

√
2

2 )
= 8− i8.

4



(c) Let z = r(cosφ + i sinφ). Then

z4 = r4(cos (4φ) + i sin (4φ)) = cosπ + i sinπ.

Thus r = 1 and 4φ = π + 2kπ, whence φ = π
4 + k π

2 . The four different solutions are
obtained by setting k = 0, 1, 2, 3. We have

k φ z

0 π
4

√
2

2 + i
√

2
2

1 3π
4 −

√
2

2 + i
√

2
2

2 5π
4 −

√
2

2 − i
√

2
2

3 7π
4

√
2

2 − i
√

2
2

¥

Problem 5 (a) Perform the operation
[

1 i
i −1

] [
2i i
−i 1

]
in M(2,C).

(b) Calculate the determinant of
[

5 1
2 2

]
in Z7.

(c) Determine whether
[

cos θ − sin θ
sin θ cos θ

]
is invertible in M(2,C) and, if so, calculate its

inverse.

(d) Determine whether
[

4 1
−3 2

]
is invertible in M(2,Z5) and, if so, calculate its in-

verse.

(e) Find all the invertible matrices in M(2,Z2).

Solution:

(a)
[

1 i
i −1

] [
2i i
−i 1

]
=

[
1 + 2i 2i
−2 + i −2

]
.

(b)
∣∣∣∣

5 1
2 2

∣∣∣∣ = 5 · 2− 1 · 2 = 3− 2 = 1.

(c)
∣∣∣∣

cos θ − sin θ
sin θ cos θ

∣∣∣∣ = cos2 θ + sin2 θ = 1 6= 0. Hence,
[

cos θ − sin θ
sin θ cos θ

]
is invertible and

[
cos θ − sin θ
sin θ cos θ

]−1

=
[

cos θ sin θ
− sin θ cos θ

]
=

[
cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

]
.
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(d)
∣∣∣∣

4 1
−3 2

∣∣∣∣ = 4 · 2 − 1(−3) = 3 − 2 = 1 6= 0. Hence
[

4 1
−3 2

]
is invertible and its

inverse is
[

4 1
−3 2

]−1

=
[

2 4
3 4

]
.

(e) An easy analysis of the determinant of ad− bc of
[

a b
c d

]
with a, b, c, d ∈ Z2 shows

that it is nonzero for the following six matrices
[

0 1
1 0

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
1 0
0 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
.

¥
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