
HOMEWORK 2: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 (a) Show that G = C∗ = C − {0} under complex multiplication forms a
group.

(b) Construct the group table of V and Q8 and determine whether they are Abelian.

(c) Find two elements a, b in S3 such that (ab)2 6= a2b2.

Solution:

(a) We first show closure: Let z = a + bi and w = c + di be both in C∗. Then we have
zw = (a + bi)(c + di) = ac − bd + (ad + bc)i. To show that this element is in C∗, we
compute

(ac− bd)2 + (ad + bc)2 = a2c2 − 2abcd + b2d2 + a2d2 + 2abcd + b2c2

= a2c2 + b2d2 + a2d2 + b2c2

= a2(c2 + d2) + b2(c2 + d2)
= (a2 + b2)(c2 + d2).

Now z, w ∈ C∗ imply that a2+b2 > 0 and c2+d2 > 0, whence (ac−bd)2+(ad+bc)2 > 0
and zw ∈ C∗.

To show associativity, let z = a + bi, w = c + di and u = e + fi. Then

(zw)u = [(a + bi)(c + di)](e + fi)
= [(ac− bd) + (ad + bc)i](e + fi)
= [(ac− bd)e− (ad + bc)f ] + [(ac + bd)f + (ad + bc)e]i
= (ace− bde− adf − bcf) + (acf − bdf + ade + bce)i
= [(a(ce− df)− b(cf + de)] + [a(cf + de) + b(ce− df)]i
= (a + bi)[(ce− df) + (cf + de)i]
= (a + bi)[(c + di)(e + fi)]
= z(wu).

It is not difficult to check that 1 + 0i acts as a unit in multiplication and that (a +
bi)−1 = 1

a+bi = a−bi
(a+bi)(a−bi) = a−bi

a2+b2
= a

a2+b2
− b

a2+b2
i ∈ C∗, since ( a

a2+b2
)2 +( b

a2+b2
)2 =

a2+b2

(a2+b2)2
= 1

a2+b2
> 0.

Since all the group axioms hold, 〈C∗, ·〉 is a group under multiplication.

(b) The following is the multiplication table for V, where e =
[

1 0
0 1

]
, a =

[ −1 0
0 1

]
, b =

1



[
1 0
0 −1

]
, c =

[ −1 0
0 −1

]
:

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

The table is symmetric with respect to the first diagonal, whence V is an abelian
group. For the quaternions Q8 we have

1 −1 i −i j −j k −k

1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k

i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

Observe that many pairs of elements do not commute. So the quaternions form a
noncommutative group.

(c) Many elelemnts would provide examples: Take, for instance, a = (123) and b = (23).
Then we have ((123)(23))2 = (12)2 = 1, whereas (123)2(23)2 = (132)1 = (132) 6= 1. ¥

Problem 2 (a) Show that if every element of a group G is equal to its inverse, then G
is Abelian.

(b) Let G be a finite Abelian group such that for all a ∈ G, a 6= e, we have a2 6= e.
If a1, a2, . . . , an are all the elements of G with no repetitions, evaluate the product
a1a2 . . . an.

Solution:

(a) This is a very nice problem. Given that a−1 = a, for all a ∈ G, we need to show that
ab = ba, for all a, b ∈ G. We have

ab = a−1b−1 (by hypothesis)
= (ba)−1 (since (ba)−1 = a−1b−1 in any group)
= ba (again by hypothesis).

(b) The assumption a2 6= e implies that a2a−1 6= ea−1 whence a 6= a−1. Thus, each non
identity element of G has an inverse different from itself. So if in the product of all
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the elements in the commutative group G we pair each element with its inverse, the
only element that will be left alone would be the identity element. In particular, this
shows that the group must have an odd number of elements. We then have

a1a2 . . . an = e
n−1

2 · e = e.

¥

Problem 3 (a) Show that the nonzero elements of Zp, where p is a prime, form a group
under multiplication mod p.

(b) (Wilson’s Theorem) Prove that if p is a prime, then (p− 1)! ≡ −1 mod p.

Solution:

(a) To show closure, we need to show that if x, y ∈ Z∗p, then x · y ∈ Z∗p. We show here the
contrapositive, i.e., that if xy ≡ 0, then x ≡ 0 or y ≡ 0. In fact, xy ≡ 0 means that
p\xy, whence, since p is prime, by Euclid’s Lemma, we obtain p\x or p\y, i.e., x ≡ 0
or y ≡ 0, as was to be shown.

Associativity is inherited from the multiplication in Z and 1 is the identity element.
To show that inverses exist, let x ∈ Z∗p. Since p is a prime, x and p are relatively
prime. Therefore, there exist integers y and k, such that xy + pk = 1. This implies
that xy ≡ 1 modulo p, i.e., that [x]−1 = [y].

(b) Suppose that p is a prime and that a ∈ Zp. Then we have a2 ≡ 1 implies a2 − 1 ≡ 0
whence (a + 1)(a − 1) ≡ 0. Now by part (a), a + 1 ≡ 0 or a − 1 ≡ 0, i.e., a = 1 or
a = −1. This shows that in the product of all the elements in Z∗p every element will
be paired off with its inverse, except for 1 and -1 which are their own inverses. Hence
(p− 1)! = 1 · 2 · . . . · (p− 1) = 1 · (−1) = −1 in Zp, i.e., (p− 1)! ≡ −1 modulo p. ¥

Problem 4 (a) Let G = {a + b
√

2 : a, b ∈ Q}. Show that G is a subgroup of IR under
addition.

(b) Let G = {a + bi : a, b ∈ IR, a2 + b2 = 1}. Determine whether or not G is a subgroup of
C∗ under multiplication.

Solution:

(a) We use one of our subgroup criteria: Suppose a + b
√

2 and c + d
√

2 are in G. Then

(a + b
√

2)− (c + d
√

2) = (a− c) + (b− d)
√

2.

But both a− c and b−d are rationals since a, b, c, d are rationals, whence (a+ b
√

2)−
(c + d

√
2) ∈ G and therefore 〈G,+〉 is a subgroup of 〈IR, +〉 by one of our subgroup

criteria.
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(b) We apply the same criterion here: Let z = a + bi and w = c + di be elements of G,
i.e., a2 + b2 = 1 = c2 + d2. Then we have (a + bi)(c + di)1 = (a + bi)( c

c2+d2 − d
c2+d2 i) =

(a + bi)(c − di) = (ac + bd) + (bc− ad)i. We check that this is also an element of G:
We have

(ac + bd)2 + (bc− ad)2 = a2c2 + 2abcd + b2d2 + b2c2 − 2abcd + a2d2

= a2c2 + b2d2 + b2c2 + a2d2

= a2(c2 + d2) + b2(c2 + d2)
= (a2 + b2)(c2 + d2)
= 1 · 1
= 1.

Hence zw−1 ∈ G and 〈G, ·〉 ≤ 〈C∗, ·〉. ¥

Problem 5 (a) Show that if H and K are subgroups of G, then H ∩K is also a subgroup
of G.

(b) Let G be a group, a ∈ G. Show that the centralizer C(a) = G if and only if a ∈ Z(G),
the center of G.

Solution:

(a) This is also a very nice problem! Clearly, H ⊆ G and K ⊆ G imply H ∩K ⊆ G. So,
by our subgroup criterion, we need to show that, if x, y ∈ H ∩K, then xy−1 ∈ H ∩K.
Suppose that x, y ∈ H ∩ K. Then x, y ∈ H and x, y ∈ K. Since both H and K
are subgroups of G, we must have, by the subgroup criterion, that xy−1 ∈ H and
xy−1 ∈ K. But then xy−1 ∈ H ∩K and H ∩K is a subgroup of G.

(b) We have C(a) = G if and only if every element of G commutes with a if and only if
a ∈ Z(G). ¥
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