HOMEWORK 3 - MATH 341 DUE DATE: Tuesday, February 18 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Show that if G is a group and $a, b \in G$, then $|aba^{-1}| = |b|$.
 - (b) Show that if G is a group and $a, b \in G$, then |ab| = |ba|.
- 2. (a) List all the cyclic subgroups of S_3 . Does S_3 have a noncyclic proper subgroup?
 - (b) List all the cyclic subgroups of D_4 . Does D_4 have a noncyclic proper subgroup?
- 3. Let G be a group with no nontrivial proper subgroups.
 - (a) Show that G must be cyclic.
 - (b) What can you say about the order of G?
- 4. Let $\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 4 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 1 & 2 & 7 & 8 & 5 & 3 \end{pmatrix}$. Calculate:
 - (a) $\phi \tau$ and $\tau \phi$
 - (b) $\phi^2 \tau$ and $\phi \tau^2$
 - (c) the inverses ϕ^{-1} and τ^{-1}
 - (d) the orders $|\phi|$ and $|\tau|$.
- 5. (a) Show that if ρ and σ in S_n are disjoint cycles, and $\phi = \rho\sigma$, then $|\phi| = \operatorname{lcm}(|\rho|, |\sigma|).$
 - (b) Show that an m-cycle is an even permutation if and only if m is odd.