HOMEWORK 4 - MATH 341 DUE DATE: Tuesday, February 25 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Show that for any $n \ge 3$, S_n is a non-Abelian group.
 - (b) Show that every permutation $\rho \in S_n$ can be written as a product of 2-cycles of the form $(i \quad i+1)$, where $1 \leq i \leq n$.
- 2. Consider the regular tetrahedron.
 - (a) Find all possible rotations of the regular tetrahedron.
 - (b) The rotations of the regular tetrahedron correspond to elements of which known group?
- 3. (a) Find all cosets of the subgroup $5\mathbf{Z}$ in \mathbf{Z} .
 - (b) Find the index of $\langle 10 \rangle$ in \mathbf{Z}_{12} and the index of $\langle \mu_2 \rangle$ in S_3 .
- 4. (a) Let H be a subgroup of a group G. For any $a, b \in G$, let $a \sim b$ if and only if $ab^{-1} \in H$. Show that the relation \sim so defined is an equivalence relation on G, with equivalence classes the right cosets Ha of H.
 - (b) Let H be a subgroup of a group G. Show for any $a \in G$ that aH = H if and only if $a \in H$.
- 5. (a) Let G be a group with $|G| = p^2$, where p is a prime. Show that every proper subgroup of G is cyclic.
 - (b) Let G be a group with |G| = pq, where p and q are primes. Show that every proper subgroup of G is cyclic.