
HOMEWORK 4: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 (a) Show that for any n ≥ 3, Sn is a non-Abelian group.

(b) Show that every permutation ρ ∈ Sn can be written as a product of 2-cycles of the
form (i i + 1), where 1 ≤ i ≤ n.

Solution:

(a) Consider for instance (12)(123) and (123)(12). We have (12)(123) = (23) 6= (13) =
(123)(12).

(b) We know that every permutation ρ ∈ Sn can be written as a product of 2-cycles. So
to show that it can be written as a product of 2-cycles of the form (i i+1), it suffices
to show that every 2-cycle may be written as a product of 2-cycles of this special form.
So let (p q), with 1 ≤ p < q ≤ n, be a 2-cycle in Sn. Then it is not difficult to check
that

(p q) = (p p+1)(p+1 p+2) . . . (q−2 q−1)(q−1 q)(q−2 q−1) . . . (p+1 p+2)(p p+1).
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Problem 2 Consider the regular tetrahedron.

(a) Find all possible rotations of the regular tetrahedron.

(b) The rotations of the regular tetrahedron correspond to elements of which known group?

Solution:

(a) Let 1234 be the regular tetrahedron. Besides the identity rotation 1, there exist two
rotations around each axis through a vertex and the barycenter of the opposite face,
one 120o clockwise and the other 120o counterclockwise. These 8 rotations fix each
one vertex. They are

(234), (243), (134), (143), (124), (142), (123), (132).

In addition to these, there are three more rotations of 180o around each of the three
axes that pass through the midpoints of two opposite sides. These rotations are

(12)(34), (13)(24), (14)(23).

(b) The identity and the above 11 rotations are all the permutations of S4 of even order,
since they are even and there are 12 of them. Hence, they correspond to the elements
of the alternating group on 4 elements A4.
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Problem 3 (a) Find all cosets of the subgroup 5Z in Z.

(b) Find the index of 〈10〉 in Z12 and the index of 〈µ2〉 in S3.

Solution:

(a) We have
[n] = {m ∈ Z : m− n ∈ 5Z}

= {m ∈ Z : m− n = 5k, for some k ∈ Z}
= {m ∈ Z : m = n + 5k, for some k ∈ Z}
= {n + 5k : k ∈ Z}.

Hence, the different cosets correspond to the 5 different remainders of division by 5:
0, 1, 2, 3 and 4.

(b) We have

indZ12(〈10〉) =
12
|10| =

12
12

gcd(10,12)

=
12gcd(10, 12)

12
= 2.

Similarly,

indS3(〈µ2〉) =
|S3|
|µ2| =

6
2

= 3.
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Problem 4 (a) Let H be a subgroup of a group G. For any a, b ∈ G, let a ∼ b if and
only if ab−1 ∈ H. Show that the relation ∼ so defined is an equivalence relation on G,
with equivalence classes the right cosets Ha of H.

(b) Let H be a subgroup of a group G. Show for any a ∈ G that aH = H if and only if
a ∈ H.

Solution:

(a) For reflexivity notice that, since H ≤ G, e ∈ H, whence aa−1 = e ∈ H and a ∼ a. For
symmetry assume that a ∼ b. Then ab−1 ∈ H, whence (ab−1)−1 ∈ H and therefore
ba−1 ∈ H, which implies that b ∼ a. Finally, for transitivity, if a ∼ b and b ∼ c, then
ab−1 ∈ H and bc−1 ∈ H, whence, since H is a subgroup, ab−1bc−1 ∈ H and, therefore
ac−1 ∈ H, i.e., a ∼ c.

Let a ∈ G. Then

[a] = {b ∈ G : ba−1 ∈ H}
= {b ∈ G : ba−1 = h, for some h ∈ H}
= {b ∈ G : b = ha, for some h ∈ H}
= {ha : h ∈ H}
= Ha.
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(b) Suppose, first, that aH = H. Then, since e ∈ H, ae ∈ aH = H implies that there
exists h ∈ H, such that ae = h. But a = ae = h ∈ H, whence a ∈ H.

Suppose, conversely, that a ∈ H. We show that aH ⊆ H and that H ⊆ aH. For the
first inclusion, if h ∈ H, then ah ∈ H, since a ∈ H and H ≤ G. Hence aH ⊆ H.
For the reverse inclusion, if h ∈ H, then a−1h ∈ H, whence h = a(a−1h) ∈ aH and,
therefore, H ⊆ aH.
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Problem 5 (a) Let G be a group with |G| = p2, where p is a prime. Show that every
proper subgroup of G is cyclic.

(b) Let G be a group with |G| = pq, where p and q are primes. Show that every proper
subgroup of G is cyclic.

Solution:

(a) By Lagrange’s Theorem, H ≤ G implies that |H| = 1 or |H| = p or |H| = p2. In the
first case H = {e} and therefore H is cyclic. In the second case, every nonidentity
element of H generates H, so H is cyclic. In the last case H = G and therefore H is
not proper.

(b) As before, by Lagrange’s Theorem, |H| = 1 or |H| = p or |H| = q or |H| = pq. In
the first case H = {e} which is cyclic. In the second and in the third case, every
nonidentity element of H generates H and therefore H is cyclic. In the last case
H = G and therefore H is not proper.
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