HOMEWORK 5 - MATH 341 DUE DATE: Tuesday, March 11 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Show that $n^{19} n$ is divisible by 21 for any integer n.
 - (b) Find the remainder of 9^{1573} when divided by 11.
- 2. (a) Let H be a subgroup of a finite group G and K a subgroup of H. Suppose that the index [G:H] = n and the index [H:K] = m. Show that the index [G:K] = nm. (Hint: Let x_iH be the distinct cosets of H in G and y_jK the distinct left cosets of K in H. Show that x_iy_jK are the distinct cosets of K in H.)
 - (b) Let H and K be subgroups of a group G and for all $a, b \in G$ let $a \sim b$ if and only if a = hbk for some $h \in H$ and $k \in K$. Show that the relation \sim so defined is an equivalence relation. Describe the equivalence classes (which are called **double cosets**).
- 3. Determine whether the following ϕ is a homomorphism and, in cases where it is, determine its kernel:
 - (a) $\phi : \operatorname{GL}(2, \mathbb{R}) \to \mathbb{R}^*$, where $\operatorname{GL}(2, \mathbb{R})$ is the general linear group of 2×2 invertible matrices and $\phi(A) = \det(A)$.
 - (b) $\phi : \mathbf{Z}_7 \to \mathbf{Z}_7$, where $\phi(x) =$ the remainder of $x \mod 2$.
- 4. (a) Find all possible homomorphisms from **Z** to **Z**.
 - (b) Find all possible homomorphisms from **Z** onto **Z**.
- 5. (a) Show that the dihedral group D_4 contains a subgroup isomorphic to the Klein 4-group V.
 - (b) Let $G = GL(2, \mathbb{Z}_2)$, the general linear group of 2×2 invertible matrices with coefficients in \mathbb{Z}_2 . Show that $G \cong S_3$.