
HOMEWORK 5: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis
Problem 1 (a) Show that n19 − n is divisible by 21 for any integer n.

(b) Find the remainder of 91573 when divided by 11.

Solution:

(a) It suffices to show that n19 − n = n(n18 − 1) is divisible by both 3 and 7.

If n is divisible by 3, then n19−n is also divisible by 3. If n is not divisible by 3, then
n ≡ 1 or n ≡ 2 modulo 3. Therefore n2 ≡ 1 modulo 3. Thus n18 ≡ 1 modulo 3, which
implies n18 − 1 ≡ 0. Thus n19 − n is divisible by 3.

If n is divisible by 7, then n19−n is also divisible by 7. If, on the other hand, n is not
divisible by 7, then (n, 7) = 1, whence, by Euler’s Theorem, n6 ≡ 1 modulo 7. Thus,
n18 ≡ 1 modulo 7, which gives n18 − 1 ≡ 0. Thus n19 − n is divisible by 7.

(b) Since (9, 11) = 1, by Euler’s Theorem, we get 910 ≡ 1 modulo 11. Therefore

91573 = (910)157 · 93

≡ 93

= 81 · 9
≡ 4 · 9
= 36
≡ 3,

where all the congruences that appear above are assumed to be modulo 11.

¥

Problem 2 (a) Let H be a subgroup of a finite group G and K a subgroup of H. Suppose
that the index [G : H] = n and the index [H : K] = m. Show that the index [G : K] =
nm. (Hint: Let xiH be the distinct cosets of H in G and yjK the distinct left cosets
of K in H. Show that xiyjK are the distinct cosets of K in G.)

(b) Let H and K be subgroups of a group G and for all a, b ∈ G let a ∼ b if and only
if a = hbk for some h ∈ H and k ∈ K. Show that the relation ∼ so defined is
an equivalence relation. Describe the equivalence classes (which are called double
cosets).

Solution:

(a) Let xiH, i ∈ I, be the distinct cosets of H in G and yjK, j ∈ J, the distinct left cosets
of K in H. We show that xiyjK, i ∈ I, j ∈ J, are the distinct cosets of K in G.

We first show that xiyjK, i ∈ I, j ∈ J, cover the entire group G. Suppose that g ∈ G.
Then, since the xiH, i ∈ I, are the distinct cosets of H in G, there exists p ∈ I such
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that g ∈ xpH, i.e., there exists h ∈ H, such that g = xph. But yjK, j ∈ J, are all
the distinct cosets of K in H, whence there exists q ∈ J, such that h ∈ yqK, i.e.,
there exists k ∈ K, such that h = yqk. But then we have g = xph = xpyqk, whence
g ∈ xpyqK, i.e., the sets xiyjK, i ∈ I, j ∈ J, cover G.

Finally, we need to show that the sets xiyjK, i ∈ I, j ∈ J, are disjoint. Suppose, to
this end, that xiyjK ∩ xpyqK 6= ∅, for some i, p ∈ I and j, q ∈ J. Then, there exist
k1, k2 ∈ K, such that xiyjk1 = xpyqk2. Since yjk1 ∈ H and yqk2 ∈ H, this implies
that xiH ∩ xpH 6= ∅. But then, since xiH, i ∈ I, are the distinct cosets of H in G,
this yields that i = p. Thus, we have xiyjk1 = xiyqk2, whence, by the left cancellation
property, yjk1 = ypk2. But this shows that yjK ∩ yqK 6= ∅, which implies that j = q.
Therefore, the sets xiyjK, i ∈ I, j ∈ J, are disjoint.

(b) Since e ∈ H and e ∈ K, and, for all a ∈ G, a = eae, we have that a ∼ a and ∼ is
reflexive. Now suppose that a ∼ b. Then, there exist h ∈ H and k ∈ K, such that
a = hbk. But then b = h−1ak−1, with h−1 ∈ H and k−1 ∈ K, because of the subgroup
property. Therefore b ∼ a and ∼ is also symmetric. Finally, suppose that a ∼ b and
b ∼ c. Then, there exist h1, h2 ∈ H and k1, k2 ∈ K, such that a = h1bk1 and b = h2ck2.
Therefore a = h1h2ck1k2, where h1h2 ∈ H and k1k2 ∈ K, by the subgroup property.
Hence a ∼ c and ∼ is also transitive. Thus ∼ is indeed an equivalence relation on G.

To determine the equivalence class of a ∈ G we work as follows:

[a] = {b ∈ G : b ∼ a}
= {b ∈ G : b = hak, for some h ∈ H, k ∈ K}
= HaK.

¥

Problem 3 Determine whether the following φ is a homomorphism and, in cases where it
is, determine its kernel:

(a) φ : GL(2, IR) → IR∗, where GL(2, IR) is the general linear group of 2 × 2 invertible
matrices and φ(A) = det(A).

(b) φ : Z7 → Z2, where φ(x) = the remainder of x mod 2.

Solution:

(a) Let A,B ∈ GL(2, IR). Then we have

φ(A ·B) = det(A ·B) = det(A) · det(B) = φ(A) · φ(B).

Thus φ is in fact a homomorphism. For its kernel we get

Ker(φ) = {A ∈ GL(2, IR) : φ(A) = 1}
= SL(2, IR).
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(b) This φ is not a homomorphism. Take for instance 3, 4 ∈ Z7. We have

φ(3 + 4) = φ(0) = 0 6= 1 + 0 = φ(3) + φ(4).

¥

Problem 4 (a) Find all possible homomorphisms from Z to Z.

(b) Find all possible homomorphisms from Z onto Z.

Solution:

(a) All possible homomorphisms from Z to Z are determined by the image of the generator
1. So, suppose that φ(1) = n ∈ Z. Then the homomorphism is

φ(k) = φ(k · 1) = kφ(1) = kn,

for all k ∈ Z. Hence all homomorphisms are φn : Z → Z, with φn(k) = kn, for all
k ∈ Z, over different values of n ∈ Z.

(b) From part (a), it suffices to take those φn’s that map the generator 1 to a generator in
Z. But Z has only two generators 1 and -1. Therefore, the only two homomorphisms
of Z onto Z are

φ1 : Z → Z; φ1(k) = k,

φ−1 : Z → Z;φ−1(k) = −k.

¥

Problem 5 (a) Show that the dihedral group D4 contains a subgroup isomorphic to the
Klein 4-group V .

(b) Let G = GL(2,Z2), the general linear group of 2×2 invertible matrices with coefficients
in Z2. Show that G ∼= S3.

Solution:

(a) Let’s let 1 =
[

1 0
0 1

]
,−1 =

[ −1 0
0 −1

]
, k =

[ −1 0
0 1

]
,−k =

[
1 0
0 −1

]
. Then

the multiplication table of V, the Klein four group, becomes

1 −1 k −k

1 1 −1 k −k
−1 −1 1 −k k

k k −k 1 −1
−k −k k −1 1
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Now consider also the subgroup of D4 consisting of H = {ρ0, ρ
2, τ, ρ2τ}. Its multipli-

cation table is
ρ0 ρ2 τ ρ2τ

ρ0 ρ0 ρ2 τ ρ2τ
ρ2 ρ2 ρ0 ρ2τ τ
τ τ ρ2τ ρ0 ρ2

ρ2τ ρ2τ τ ρ2 ρ0

Now it is obvious from the two multiplication tables that V ∼= H, where the isomor-
phism φ : V → H is given by

1 7→ ρ0,−1 7→ ρ2, k 7→ τ and − k 7→ ρ2τ.

(b) We present the two multiplication tables

1 (12) (13) (23) (123) (132)
1 1 (12) (13) (23) (123) (132)

(12) (12) 1 (132) (123) (23) (13)
(13) (13) (123) 1 (132) (12) (23)
(23) (23) (132) (123) 1 (13) (12)
(123) (123) (13) (23) (12) (132) 1
(132) (132) (23) (12) (13) 1 (123)

and, setting 1 =
[

1 0
0 1

]
, i =

[
0 1
1 0

]
, j =

[
1 1
0 1

]
, k =

[
1 0
1 1

]
, a =

[
1 1
1 0

]
, b =

[
0 1
1 1

]
, we get the table

1 i j k a b

1 1 i j k a b
i i 1 b a k j
j j a 1 b i k
k k b a 1 j i
a a j k i b 1
b b k i j 1 a

Now it is obvious that the two groups are isomorphic via the isomorphism φ : GL(2,Z2) →
S3 with

1 7→ 1, i 7→ (12), j 7→ (13), k 7→ (23), a 7→ (123) and b 7→ (132).

¥
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