HOMEWORK 5: SOLUTIONS - MATH 341 INSTRUCTOR: George Voutsadakis

Problem 1 (a) Show that $n^{19} - n$ is divisible by 21 for any integer n.

(b) Find the remainder of 9^{1573} when divided by 11.

Solution:

(a) It suffices to show that $n^{19} - n = n(n^{18} - 1)$ is divisible by both 3 and 7.

If n is divisible by 3, then $n^{19} - n$ is also divisible by 3. If n is not divisible by 3, then $n \equiv 1$ or $n \equiv 2$ modulo 3. Therefore $n^2 \equiv 1$ modulo 3. Thus $n^{18} \equiv 1$ modulo 3, which implies $n^{18} - 1 \equiv 0$. Thus $n^{19} - n$ is divisible by 3.

If n is divisible by 7, then $n^{19} - n$ is also divisible by 7. If, on the other hand, n is not divisible by 7, then (n, 7) = 1, whence, by Euler's Theorem, $n^6 \equiv 1$ modulo 7. Thus, $n^{18} \equiv 1$ modulo 7, which gives $n^{18} - 1 \equiv 0$. Thus $n^{19} - n$ is divisible by 7.

(b) Since (9,11) = 1, by Euler's Theorem, we get $9^{10} \equiv 1 \mod 11$. Therefore

$$\begin{array}{rcl} 9^{1573} & = & (9^{10})^{157} \cdot 9^3 \\ & \equiv & 9^3 \\ & = & 81 \cdot 9 \\ & \equiv & 4 \cdot 9 \\ & = & 36 \\ & \equiv & 3, \end{array}$$

where all the congruences that appear above are assumed to be modulo 11.

- **Problem 2** (a) Let H be a subgroup of a finite group G and K a subgroup of H. Suppose that the index [G : H] = n and the index [H : K] = m. Show that the index [G : K] = nm. (Hint: Let x_iH be the distinct cosets of H in G and y_jK the distinct left cosets of K in H. Show that x_iy_jK are the distinct cosets of K in G.)
 - (b) Let H and K be subgroups of a group G and for all $a, b \in G$ let $a \sim b$ if and only if a = hbk for some $h \in H$ and $k \in K$. Show that the relation \sim so defined is an equivalence relation. Describe the equivalence classes (which are called **double cosets**).

Solution:

(a) Let $x_i H, i \in I$, be the distinct cosets of H in G and $y_j K, j \in J$, the distinct left cosets of K in H. We show that $x_i y_j K, i \in I, j \in J$, are the distinct cosets of K in G.

We first show that $x_i y_j K, i \in I, j \in J$, cover the entire group G. Suppose that $g \in G$. Then, since the $x_i H, i \in I$, are the distinct cosets of H in G, there exists $p \in I$ such that $g \in x_p H$, i.e., there exists $h \in H$, such that $g = x_p h$. But $y_j K, j \in J$, are all the distinct cosets of K in H, whence there exists $q \in J$, such that $h \in y_q K$, i.e., there exists $k \in K$, such that $h = y_q k$. But then we have $g = x_p h = x_p y_q k$, whence $g \in x_p y_q K$, i.e., the sets $x_i y_j K, i \in I, j \in J$, cover G.

Finally, we need to show that the sets $x_i y_j K$, $i \in I$, $j \in J$, are disjoint. Suppose, to this end, that $x_i y_j K \cap x_p y_q K \neq \emptyset$, for some $i, p \in I$ and $j, q \in J$. Then, there exist $k_1, k_2 \in K$, such that $x_i y_j k_1 = x_p y_q k_2$. Since $y_j k_1 \in H$ and $y_q k_2 \in H$, this implies that $x_i H \cap x_p H \neq \emptyset$. But then, since $x_i H, i \in I$, are the distinct cosets of H in G, this yields that i = p. Thus, we have $x_i y_j k_1 = x_i y_q k_2$, whence, by the left cancellation property, $y_j k_1 = y_p k_2$. But this shows that $y_j K \cap y_q K \neq \emptyset$, which implies that j = q. Therefore, the sets $x_i y_j K, i \in I, j \in J$, are disjoint.

(b) Since $e \in H$ and $e \in K$, and, for all $a \in G$, a = eae, we have that $a \sim a$ and \sim is reflexive. Now suppose that $a \sim b$. Then, there exist $h \in H$ and $k \in K$, such that a = hbk. But then $b = h^{-1}ak^{-1}$, with $h^{-1} \in H$ and $k^{-1} \in K$, because of the subgroup property. Therefore $b \sim a$ and \sim is also symmetric. Finally, suppose that $a \sim b$ and $b \sim c$. Then, there exist $h_1, h_2 \in H$ and $k_1, k_2 \in K$, such that $a = h_1bk_1$ and $b = h_2ck_2$. Therefore $a = h_1h_2ck_1k_2$, where $h_1h_2 \in H$ and $k_1k_2 \in K$, by the subgroup property. Hence $a \sim c$ and \sim is also transitive. Thus \sim is indeed an equivalence relation on G.

To determine the equivalence class of $a \in G$ we work as follows:

$$[a] = \{b \in G : b \sim a\}$$

= $\{b \in G : b = hak, \text{ for some } h \in H, k \in K\}$
= $HaK.$

Problem 3 Determine whether the following ϕ is a homomorphism and, in cases where it is, determine its kernel:

- (a) $\phi : \operatorname{GL}(2,\mathbb{R}) \to \mathbb{R}^*$, where $\operatorname{GL}(2,\mathbb{R})$ is the general linear group of 2×2 invertible matrices and $\phi(A) = \det(A)$.
- (b) $\phi : \mathbf{Z}_7 \to \mathbf{Z}_2$, where $\phi(x) = \text{the remainder of } x \mod 2$.

Solution:

(a) Let $A, B \in GL(2, \mathbb{R})$. Then we have

 $\phi(A \cdot B) = \det(A \cdot B) = \det(A) \cdot \det(B) = \phi(A) \cdot \phi(B).$

Thus ϕ is in fact a homomorphism. For its kernel we get

$$\operatorname{Ker}(\phi) = \{A \in \operatorname{GL}(2, \mathbb{R}) : \phi(A) = 1\}$$
$$= \operatorname{SL}(2, \mathbb{R}).$$

(b) This ϕ is not a homomorphism. Take for instance $3, 4 \in \mathbb{Z}_7$. We have

$$\phi(3+4) = \phi(0) = 0 \neq 1 + 0 = \phi(3) + \phi(4).$$

Problem 4 (a) Find all possible homomorphisms from **Z** to **Z**.

(b) Find all possible homomorphisms from \mathbf{Z} onto \mathbf{Z} .

Solution:

(a) All possible homomorphisms from \mathbf{Z} to \mathbf{Z} are determined by the image of the generator 1. So, suppose that $\phi(1) = n \in \mathbf{Z}$. Then the homomorphism is

$$\phi(k) = \phi(k \cdot 1) = k\phi(1) = kn,$$

for all $k \in \mathbb{Z}$. Hence all homomorphisms are $\phi_n : \mathbb{Z} \to \mathbb{Z}$, with $\phi_n(k) = kn$, for all $k \in \mathbb{Z}$, over different values of $n \in \mathbb{Z}$.

(b) From part (a), it suffices to take those ϕ_n 's that map the generator 1 to a generator in **Z**. But **Z** has only two generators 1 and -1. Therefore, the only two homomorphisms of **Z** onto **Z** are

$$\phi_1 : \mathbf{Z} \to \mathbf{Z}; \phi_1(k) = k,$$

 $\phi_{-1} : \mathbf{Z} \to \mathbf{Z}; \phi_{-1}(k) = -k.$

- **Problem 5** (a) Show that the dihedral group D_4 contains a subgroup isomorphic to the Klein 4-group V.
 - (b) Let $G = GL(2, \mathbb{Z}_2)$, the general linear group of 2×2 invertible matrices with coefficients in \mathbb{Z}_2 . Show that $G \cong S_3$.

Solution:

(a) Let's let $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $-1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, $k = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $-k = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Then the multiplication table of V, the Klein four group, becomes

	1	-1	k	-k
1	1	-1	k	-k
-1	-1	1	-k	k
k	k	-k	1	-1
-k	-k	k	-1	1

Now consider also the subgroup of D_4 consisting of $H = \{\rho_0, \rho^2, \tau, \rho^2 \tau\}$. Its multiplication table is

Now it is obvious from the two multiplication tables that $V \cong H$, where the isomorphism $\phi: V \to H$ is given by

$$1 \mapsto \rho_0, -1 \mapsto \rho^2, k \mapsto \tau \text{ and } -k \mapsto \rho^2 \tau.$$

(b) We present the two multiplication tables

	1	(12)	(13)	(23)	(123)	(132)
1	1	(12)	(13)	(23)	(123)	(132)
(12)	(12)	1	(132)	(123)	(23)	(13)
(13)	(13)	(123)	1	(132)	(12)	(23)
(23)	(23)	(132)	(123)	1	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	1
(132)	(132)	(23)	(12)	(13)	1	(123)

and, setting $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $i = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $j = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $k = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $a = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, we get the table

	1	i	j	k	a	b
1	1	i	j	k	a	b
i	i	1	b	a	k	j
j	j	a	1	b	i	k
k	k	b	a	1	j	i
a	a	j	k	i	b	1
b	b	k	i	j	1	a

Now it is obvious that the two groups are isomorphic via the isomorphism ϕ : GL(2, \mathbb{Z}_2) \rightarrow S_3 with

$$1 \mapsto 1, i \mapsto (12), j \mapsto (13), k \mapsto (23), a \mapsto (123) \text{ and } b \mapsto (132).$$