HOMEWORK 5: SOLUTIONS - MATH 341
INSTRUCTOR: George Voutsadakis

Problem 1 (a) Show that n'® —n is divisible by 21 for any integer n.
(b) Find the remainder of 9°™ when divided by 11.
Solution:

(a) It suffices to show that n!'® — n = n(n'® — 1) is divisible by both 3 and 7.

If n is divisible by 3, then n' —n is also divisible by 3. If n is not divisible by 3, then
n =1 or n = 2 modulo 3. Therefore n? = 1 modulo 3. Thus n'® = 1 modulo 3, which
implies n'® — 1 = 0. Thus n'® — n is divisible by 3.

If n is divisible by 7, then n'® —n is also divisible by 7. If, on the other hand, n is not
divisible by 7, then (n,7) = 1, whence, by Euler’s Theorem, n® = 1 modulo 7. Thus,
n'® =1 modulo 7, which gives n'® — 1 = 0. Thus n!? — n is divisible by 7.

(b) Since (9,11) = 1, by Euler’s Theorem, we get 91 = 1 modulo 11. Therefore
91573 —  (910)157 . 93

93

= 81-9

4-9

36

= 3,

where all the congruences that appear above are assumed to be modulo 11.

Problem 2 (a) Let H be a subgroup of a finite group G and K a subgroup of H. Suppose
that the index |G : H] = n and the index [H : K] = m. Show that the index [G : K] =
nm. (Hint: Let x;H be the distinct cosets of H in G and y; K the distinct left cosets
of K in H. Show that x;y; K are the distinct cosets of K in G.)

(b) Let H and K be subgroups of a group G and for all a,b € G let a ~ b if and only
if a = hbk for some h € H and k € K. Show that the relation ~ so defined is
an equivalence relation. Describe the equivalence classes (which are called double
cosets).

Solution:

(a) Let z;H,i € I, be the distinct cosets of H in G and y; K, j € J, the distinct left cosets
of K in H. We show that x;y; K, € I,j € J, are the distinct cosets of K in G.

We first show that z;y,K,i € I,j € J, cover the entire group G. Suppose that g € G.
Then, since the x;H,7 € I, are the distinct cosets of H in G, there exists p € I such



that g € x,H, i.e., there exists h € H, such that g = x,h. But y;K,j € J, are all
the distinct cosets of K in H, whence there exists ¢ € J, such that h € y,k, i.e.,
there exists & € K, such that h = y,k. But then we have g = z,h = x,y,k, whence
g € xpyyK, ie., the sets x;y;K,1 € 1,5 € J, cover G.

Finally, we need to show that the sets x;y;K,7 € I,j € J, are disjoint. Suppose, to
this end, that z;y; K Ny, # 0, for some i,p € I and j,¢q € J. Then, there exist
k1,ko € K, such that x;y;k1 = xpygko. Since y;jk1 € H and ygzko € H, this implies
that o; H Nz, H # (. But then, since z;H,i € I, are the distinct cosets of H in G,
this yields that ¢ = p. Thus, we have z;y;k1 = z;y,k2, whence, by the left cancellation
property, y;k1 = ypks. But this shows that y; K Ny, K # 0, which implies that j = q.
Therefore, the sets x;y;K,i € I,j € J, are disjoint.

(b) Since e € H and e € K, and, for all a € G, a = eae, we have that a ~ a and ~ is
reflexive. Now suppose that a ~ b. Then, there exist h € H and k € K, such that
a = hbk. But then b = h'ak™!, with A~ € H and k~! € K, because of the subgroup
property. Therefore b ~ a and ~ is also symmetric. Finally, suppose that a ~ b and
b ~ c. Then, there exist hq, ho € H and k1, ko € K, such that a = h1bk; and b = hocks.
Therefore a = hihockiks, where hiho € H and k1ke € K, by the subgroup property.
Hence a ~ ¢ and ~ is also transitive. Thus ~ is indeed an equivalence relation on G.

To determine the equivalence class of a € G we work as follows:

[a] = {beG:b~a}
= {be G:b=hak, for some h € H k € K}
= HaK.

Problem 3 Determine whether the following ¢ is a homomorphism and, in cases where it
18, determine its kernel:

(a) ¢ : GL(2,R) — IR*, where GL(2,IR) is the general linear group of 2 x 2 invertible
matrices and ¢(A) = det(A).

(b) &:Z7 — Zy, where ¢(x) = the remainder of x mod 2.
Solution:
(a) Let A, B € GL(2,IR). Then we have
¢(A- B) =det(A- B) =det(A) -det(B) = ¢(A) - ¢(B).
Thus ¢ is in fact a homomorphism. For its kernel we get

Ker(¢) = {A€GL2R):¢(A) =1}
— SL(2,RR).



(b) This ¢ is not a homomorphism. Take for instance 3,4 € Z7. We have

PB3+4)=9(0) =0#14+0=¢(3) + o(4).

Problem 4 (a) Find all possible homomorphisms from Z to Z.

(b) Find all possible homomorphisms from Z onto Z.
Solution:

(a) All possible homomorphisms from Z to Z are determined by the image of the generator
1. So, suppose that ¢(1) = n € Z. Then the homomorphism is

¢(k) = ¢(k - 1) = ko(1) = kn,

for all k£ € Z. Hence all homomorphisms are ¢, : Z — Z, with ¢, (k) = kn, for all
k € Z, over different values of n € Z.

(b) From part (a), it suffices to take those ¢,,’s that map the generator 1 to a generator in
Z. But Z has only two generators 1 and -1. Therefore, the only two homomorphisms
of Z onto Z are

¢1:Z—Z;p1(k) =k,
¢-1:Z—Z;p_1(k) = —k.

Problem 5 (a) Show that the dihedral group Dy contains a subgroup isomorphic to the
Klein 4-group V.

(b) Let G = GL(2,Z3), the general linear group of 2x2 invertible matrices with coefficients
in Zo. Show that G = Ss.

Solution:

... 10 [-1 o], [-10] , [1 o0
(a)Letsletl—[O 1],—1—[ 0 _1],/@—[ 0 1], k:—[o _1].Then

the multiplication table of V, the Klein four group, becomes

| 1 -1 k -k
1 1 -1 k —k
-1|-1 1 -k k
k| k -k 1 -1
~k|-k k -1 1




Now consider also the subgroup of Dy consisting of H = {pg, p?, 7, p>7}. Its multipli-

cation table is
I s
po | po p2 T pT
L IR
O R
pript 0

Now it is obvious from the two multiplication tables that V' = H, where the isomor-
phism ¢ : V — H is given by

1 pg,—1+ p? k—7and —k— p°r.

(b) We present the two multiplication tables

1 (12) (13) (23) (123) (132)

1 1 (12) (13) (23) (123) (132)

(12) | (12) 1 (132) (123) (23) (13)

(13) | (13) (123) 1 (132) (12) (23)

23) | (23) (132) (123) 1 (13) (12)
(123) | (123) (13) (23) (12) (132) 1

(132) | (132) (23) (12) (13) 1  (123)

, 101 . 01 . 11 10 11
and,settmgl—[o 1},1—[1 0]7]—[0 1]7k_[1 1],a—[1 O]’b_

[ (1] 1 ] , we get the table

S ™R oSS,
DR N e e o o
—= oS 2. QR
Q R e S, o

SN Qo S =
. Qo .

SN QT S

Now it is obvious that the two groups are isomorphic via the isomorphism ¢ : GL(2, Z2) —
S3 with

11,00 (12),5 — (13),k — (23),a — (123) and b — (132).



