HOMEWORK 8 - MATH 341

DUE DATE: Tuesday, April 1 INSTRUCTOR: George Voutsadakis

INSTRUCTOR. George voutsauakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Find the order of (ρ, i) in the group $S_3 \times Q_8$.
 - (b) Find the order of $((2\ 3\ 4), 15)$ in $A_4 \times \mathbf{Z}_{18}$.
- 2. (a) Find the distinct cosets of $H = \langle (3,5) \rangle$ in the group $U(10) \times U(12)$.
 - (b) Find the order of $(3,2) + \langle (6,8) \rangle$ in $(3\mathbf{Z} \times 2\mathbf{Z})/\langle (6,8) \rangle$.
- 3. (a) Explain why there are no nontrivial proper subgroups H and K in \mathbb{Z}_8 such that $\mathbb{Z}_8 = H \oplus K$.
 - (b) Find nontrivial proper subgroups H and K in U(12) such that HK = U(12).
- 4. (a) Let H and K be subgroups of a group G such that G = H ⊕ K, H is cyclic of order 6, and K is cyclic of order 15. Show that G is an Abelian group of order 90 that is not cyclic.
 - (b) Let $G = H_1 \oplus \ldots \oplus H_n$, and let $x = h_1 + \ldots + h_n \in G$. Show that $|x| = \operatorname{lcm}(|h_1|, \ldots, |h_n|)$.
- 5. Let H and K be subgroups of an Abelian group G and let $\phi: G \to H$ be a homomorphism such that
 - (1) $\phi(h) = h$ for all $h \in H$
 - (2) $\operatorname{Kern}(\phi) = K$.

Show that $G = H \oplus K$.