HOMEWORK 8: SOLUTIONS - MATH 341 INSTRUCTOR: George Voutsadakis

Problem 1 (a) Find the order of (ρ, i) in the group $S_3 \times Q_8$.

(b) Find the order of $((2 \ 3 \ 4), 15)$ in $A_4 \times \mathbb{Z}_{18}$.

Solution:

- (a) We have $|(\rho, i)| = \text{lcm}(3, 4) = 12$.
- (b) Similarly,

$$\begin{array}{rcl} ((234),15)| & = & \operatorname{lcm}(|(234)|,|15|) \\ & = & \operatorname{lcm}(3,\frac{18}{\gcd(15,18)}) \\ & = & \operatorname{lcm}(3,\frac{18}{3}) \\ & = & \operatorname{lcm}(3,6) \\ & = & 6. \end{array}$$

Problem 2 (a) Find the distinct cosets of $H = \langle (3,5) \rangle$ in the group $U(10) \times U(12)$.

(b) Find the order of $(3,2) + \langle (6,8) \rangle$ in $(3\mathbf{Z} \times 2\mathbf{Z})/\langle (6,8) \rangle$.

Solution:

(a) Recall that $U(10) = \{1, 3, 7, 9\}$ and $U(12) = \{1, 5, 7, 11\}$. Now $H = \langle (3, 5) \rangle = \{(3, 5), (9, 1), (7, 5), (1, 1)\}$, whence $[U(10) \times U(12) : \langle (3, 5) \rangle] = \frac{16}{4} = 4$. The cosets are H itself,

$$(1,7)\langle (3,5)\rangle = \{(3,11), (9,7), (7,11), (1,7)\}, (1,11)\langle (3,5)\rangle = \{(3,7), (9,11), (7,7), (1,11)\}$$

and

$$(3,1)\langle (3,5)\rangle = \{(9,5),(7,1),(1,5),(3,1)\}.$$

(b) We have

$$2(3,2) + \langle (6,8) \rangle = (0,4) + \langle (6,8) \rangle, \quad 3(3,2) + \langle (6,8) \rangle = (3,6) + \langle (6,8) \rangle,$$
$$4(3,2) + \langle (6,8) \rangle = (0,0) + \langle (6,8) \rangle,$$

whence $|(3,2) + \langle (6,8) \rangle| = 4$.

Problem 3 (a) Explain why there are no nontrivial proper subgroups H and K in \mathbb{Z}_8 such that $\mathbb{Z}_8 = H \oplus K$.

(b) Find nontrivial proper subgroups H and K in U(12) such that HK = U(12).

Solution:

- (a) By order considerations we must have |H| = 2 and |K| = 4 (or |H| = 4 and |K| = 2). Thus $|H| = \langle 4 \rangle$ and $K = \langle 2 \rangle$. But then, the group $H \oplus K$ does not have any element of order 8 and thus $\mathbb{Z}_8 \neq H \oplus K$.
- (b) Set $H = \langle 5 \rangle = \{1, 5\}$ and $K = \langle 7 \rangle = \{1, 7\}$. Then $HK = \{1, 5\}\{1, 7\} = \{1, 5, 7, 11\}$.
- **Problem 4** (a) Let H and K be subgroups of a group G such that $G = H \oplus K$, H is cyclic of order 6, and K is cyclic of order 15. Show that G is an Abelian group of order 90 that is not cyclic.
 - (b) Let $G = H_1 \oplus \ldots \oplus H_n$, and let $x = h_1 + \ldots + h_n \in G$. Show that $|x| = \operatorname{lcm}(|h_1|, \ldots, |h_n|)$.

Solution:

- (a) Let $G = H \oplus K$, with $H = \langle a \rangle$, $K = \langle b \rangle$, such that |a| = 6 and |b| = 15. We then have that $G \cong H \times K$, whence G is abelian since both H and K are and $|G| = 6 \times 15 = 90$. G is not cyclic since $\max_{g \in G} |g| = \operatorname{lcm}(|a|, |b|) = \operatorname{lcm}(6, 15) = 30$.
- (b) This is a straightforward consequence of the fact that $G \cong H_1 \times \ldots \times H_n$ and that, under this isomorphism, x corresponds to the element (h_1, h_2, \ldots, h_n) of the direct product.

Problem 5 Let H and K be subgroups of an Abelian group G and let $\phi : G \to H$ be a homomorphism such that

- (1) $\phi(h) = h$ for all $h \in H$
- (2) $\operatorname{Kern}(\phi) = K$.

Show that $G = H \oplus K$.

Solution:

Since G is abelian, we have that $H \triangleleft G$ and $K \triangleleft G$. So it suffices to show that $H \cap K = \{1\}$ and that HK = G.

For the first property, suppose that $x \in H \cap K$. Then $x = \phi(x) = 1$. Therefore $H \cap K = \{1\}$.

For the second property, if $g \in G$, then $\phi(g) \in H$, whence $\phi(\phi(g)) = \phi(g)$, i.e., $\phi(\phi(g))\phi(g)^{-1} = 1$ or $\phi(\phi(g)g^{-1}) = 1$. Therefore $\phi(g)g^{-1} = k$, for some $k \in K$. Thus $g = k^{-1}\phi(g) = \phi(g)k^{-1} \in HK$, as required.