
HOMEWORK 9: SOLUTIONS - MATH 341

INSTRUCTOR: George Voutsadakis
Caution: These solutions were written speedily. They may
contain mistakes!
Problem 1 (a) Find up to isomorphism all Abelian groups of order 32 that have exactly

two subgroups of order 4.

(b) Let p be a prime. Determine how many Abelian groups there are of order p5.

Solution:

(a) There are in total seven groups up to isomorphism of order 32 = 25 :

Z2 × Z2 × Z2 × Z2 × Z2, Z4 × Z2 × Z2 × Z2, Z4 × Z4 × Z2,

Z8 × Z2 × Z2, Z8 × Z4, Z16 × Z2, Z32.

The first group has
(
5
2

)
subgroups of order 4, the second has more than

(
3
2

)
= 3

subgroups of order 4, the third has also at least 3 sugroups of order 4, and the same
holds for the 4th and the 5th groups in the list because Z4 and Z8 both contain
subgroups of order 2 and 4. Z32 has a unique subgroup of order 4. So the only choice
for exactly two subgroups of order 4 is the group Z16×Z2. In fact these two subgroups
are

H = {(0, 0), (4, 0), (8, 0), (12, 0)} and K = {(0, 0), (8, 0), (0, 1), (8, 1)}.

(b) There are 7 subgroups up to isomorphism of order p5 :

Zp × Zp × Zp × Zp × Zp, Zp2 × Zp × Zp × Zp, Zp2 × Zp2 × Zp,

Zp3 × Zp × Zp, Zp3 × Zp2 , Zp4 × Zp, Zp5 .

¥

Problem 2 (a) Let p and q be distinct primes and G an Abelian group of order |G| = n,
where both p and q divide n. Show that G contains a cyclic subgroup of order pq.

(b) Let G1 and G2 be finite Abelian groups. Show that G1 and G2 have the same number
of elements of order n for all n, if and only if G1

∼= G2.

Solution:

(a) Since p\n and q\n, by the fundamental theorem of finite abelian groups, the given
group G must have two direct factors of the form Zpk and Zql , with k, l ≥ 1. Now 〈pk−1〉
is a subgroup of Zpk of order p and 〈ql−1〉 is a subgroup of Zql of order q. Therefore,
since (p, q) = 1, the group 〈pk−1〉 × 〈ql−1〉 is isomorphic to a cyclic subgroup of G of
order pq.
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(b) If G1
∼= G2, then G1 and G2 have the same number of elements of order n for all n,

by Proposition 2.2.23 (4) on page 84. Suppose conversely, that G1 6∼= G2. Then, by
the fundamental theorem of finite abelian groups, there exist a prime p, such that the
direct factors of G1 corresponding to p are not the same as the direct factors of G2

corresponding to p. Suppose that k is the highest power such that the number m of
direct factors Zpk in G1 and the number n of direct factors Zpk in G2 are different.
Then, it is not difficult to see that the number of elements of order pk in G1 and in
G2 are not the same.

¥

Problem 3 (a) Let R be a ring. The center of R is defined as follows: Z(R) = {x ∈
R : xy = yx for all y ∈ R}. Show that Z(R) is a subring of R.

(b) Find the center Z(H) of the ring H of quaternions.

Solution:

(a) We use the subring criterion. Suppose that x, y ∈ Z(R). Then, for all z ∈ R, xz = zx
and yz = zy. Therefore

z(x− y) = zx− zy = xz − yz = (x− y)z,

whence x − y ∈ Z(R). Finally, z(xy) = (zx)y = (xz)y = x(zy) = x(yz) = (xy)z and
xy ∈ Z(R), as well. Thus Z(R) is a subring by the subring criterion.

(b) None of i,−i, j,−j, k and −k commutes with all other elements in the quaternion ring.
Thus, the only elements that commute with every other element in the ring are the
ones that correspond to real numbers, i.e.,

Z(H) = {a
[

1 0
0 1

]
: a ∈ IR}.

¥

Problem 4 (a) A Boolean ring is a ring with the property that a2 = a for all a ∈ R.
Show that a Boolean ring is a commutative ring with 2a = 0 for all a ∈ R.

(b) For any set X, let P (X) = {A : A ⊆ X} be the powerset of X. For any A and B in
P (X) define A + B = {x : x ∈ A ∪ B, x 6∈ A ∩ B}, A · B = A ∩ B. Show that under
these two operations P (X) is a ring with unity that is a Boolean ring.

Solution:
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(a) We have
a + a = (a + a)2

= (a + a)(a + a)
= a2 + a2 + a2 + a2

= a + a + a + a,

whence a + a = 0, i.e., 2a = 0.

For commutativity,
a + b = (a + b)2

= (a + b)(a + b)
= a2 + ab + ba + b2

= a + ab + ba + b,

whence ab + ba = 0, which yields ab = −ba. But 2(ba) = 0, by our previous proof,
whence ba = −ba, and, therefore ab = ba.

(b) Associativity of Addition:

(A + B) + C = ((A ∩Bc) ∪ (Ac ∩B)) + C
= (((A ∩Bc) ∪ (Ac ∩B)) ∩ Cc) ∪ (((A ∩Bc) ∪ (Ac ∩B))c ∩ C)
= (A ∩Bc ∩ Cc) ∪ (A ∩B ∩ Cc) ∪ (((A ∩Bc)c ∩ (Ac ∩B)c) ∩ C)
= (A ∩Bc ∩ Cc) ∪ (A ∩B ∩ Cc) ∪ (((Ac ∪B) ∩ (A ∪Bc)) ∩ C)
= (A ∩Bc ∩ Cc) ∪ (A ∩B ∩ Cc)∪

(((Ac ∩ (A ∪Bc)) ∪ (B ∩ (A ∪Bc)) ∩ C))
= (A ∩Bc ∩ Cc) ∪ (A ∩B ∩ Cc)∪

(((Ac ∩A) ∪ (Ac ∩Bc) ∪ (B ∩A) ∪ (B ∩Bc)) ∩ C)
= (A ∩Bc ∩ Cc) ∪ (A ∩B ∩ Cc) ∪ (((Ac ∩Bc) ∪ (B ∩A)) ∩ C)
= (A ∩Bc ∩ Cc) ∪ (A ∩B ∩ Cc) ∪ ((Ac ∩Bc ∩ C) ∪ (A ∩B ∩ C)).

Note that this is symmetric in A,B and C. Thus, we could reverse the equations
grouping B and C first, to get A + (B + C) = (A ∩Bc ∩Cc) ∪ (A ∩B ∩Cc) ∪ ((Ac ∩
Bc ∩ C) ∪ (A ∩B ∩ C)). Thus A + (B + C) = (A + B) + C.

The ∅ is the identity with respect to addition:

A + ∅ = (A ∩ ∅c) ∪ (Ac ∩ ∅)
= (A ∩X) ∪ ∅
= A,

and, similarly, for ∅+ A.

The complement A is the inverse of A with respect to addition:

A + A = (A ∩Ac) ∪ (Ac ∩A)
= ∅ ∪ ∅
= ∅.
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Obviously, + is also commutative.

The given multiplication is associative:

A(BC) = A(B ∩ C) = A ∩ (B ∩ C) = (A ∩B) ∩ C = (A ∩B)C = (AB)C.

It is also distributive with respect to addition:

A(B + C) = A ∩ ((B ∩ Cc) ∪ (Bc ∩ C))
= (Bc ∩A ∩ C) ∪ (A ∩B ∩ Cc)
= (Ac ∩A ∩ C) ∪ (Bc ∩A ∩ C) ∪ (A ∩B ∩Ac) ∪ (A ∩B ∩ Cc)
= ((Ac ∪B) ∩ (A ∩ C)) ∪ ((A ∪B) ∩ (Ac ∪ Cc))
= ((A ∩B)c ∩ (A ∩ C)) ∪ ((A ∩B) ∩ (A ∩ C)c)
= (A ∩B) + (A ∩ C)
= AB + AC.

For the Boolean property, it suffices to note that A ∩A = A.

¥

Problem 5 (a) Give an example of a commutative ring with no zero divisors that is not
an integral domain.

(b) Give an example of a ring with unity and no zero divisors that is not an integral
domain.

Solution:

1. Check that 〈2Z, +, ·〉 is a commutative ring with no zero divisors that is not an integral
domain since it does not have a multiplicative identity element.

2. The quaternion ring H is a ring with unity and without any zero divisors that is not
an integral domain since it is not a commutative ring.

¥
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