EXAM 1: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 1. Give the definitions of a one-one and of an onto function.

2. Let f : A — B be a given one-one function and let {Xs}acr be an indexed family of
subsets of A. Prove that f(NaecrXa) = Nacrf(Xa)

Solution:

(a) A function f: A — B is one-one if, for all z,y € A, x # y implies f(x) # f(y).

A function f : A — B is onto if, for all b € B, there exists an a € A, such that
f(a) = b. An alternative way to express this is to say that f is onto if and only if

f(A) = B.

(b) We show first that f(NaerXa) € Nacrf(Xqa). This part does not require that f be one-

one. Suppose y € f(NaerXa). Thus, there exists € Nyer Xy ), such that y = f(x).
But z € Nper Xy if and only if z € X, for all a € I, whence, y = f(x), implies
that y € f(X,), for all @ € I, ie., y € Nperf(Xa). This shows that f(NaerXa) C
ﬂaEIf(Xa)-
For the reverse inclusion, suppose that y € Naerf(Xy). Thus y € f(X,), for all a € I.
Hence, there exist z, € X,, such that f(z,) =y, for all & € I. But f is one-one,
whence f(zo) =y = f(zg) implies z, = g, for all a, § € I. That is z, € X3, for all
B €1, ie., x4 € NaerXa, which shows that y = f(z4) € f(NacrXa), and concludes
the pI‘OOf that maelf(Xoc) - f(ﬂaEIXoc)'

Problem 2 1. Glive the definition of a relation on a set A. Also give the definition of
an equivalence relation on A.

2. Let X be the set of functions from the real numbers into the real numbers possessing
continuous derivatives. Let R be the subset of X x X consisting of those pairs (f,g)
such that Df = Dg where D maps a function into its derivative. Prove that R is an
equivalence relation and describe an equivalence class w(f).

Solution:

(a) A relation R on a set A is a subset of the cartesian product A x 4, i.e., R C A x A.
A relation R is an equivalence relation if and only if it is reflexive, symmetric and
transitive, i.e., if

o (x,z)e R, forallx € A,
e (z,y) € R implies (y,z) € R, for all z,y € A,



e (z,y) € Rand (y,2) € R imply (z,z) € R, for all z,y,z € A.

(b) We first show that R is an equivalence relation: For all f € X, Df = Df, whence
(f,f) € R and R is reflexive. For all f,g € X with (f,g9) € R, we have Df = Dy,
whence Dg = Df and, therefore, (g, f) € R and R is symmetric. Finally, suppose
(f,9) € Rand (g,h) € R. We have Df = Dg and Dg = Dh, whence Df = Dh and,
therefore, (f,h) € R and R is transitive. Thus, R is an equivalence relation.

Let f € X. Then we have

w(f) = {9€X:(9,f) € R}
= {geX:Dg=Df}
= {geX:g=f+c¢, for some ce R}
= {f+c:ceR}.

Problem 3 1. Give the definition of a metric space.

2. Let (X,d) be a metric space. Let k be a positive real number and set di(x,y) =
k- d(xz,y). Prove that (X,dy) is a metric space.

Solution:

(a) A pair of objects (X, d) consisting of a nonempty set X and a functiond : X x X — IR,
where IR is the set of real numbers, is called a metric space provided that

(a) d(xz,y) >0, for all z,y € X,

(b) d(z,y) =0 if and only if x =y, for all z,y € X,
(c) d(z,y) =d(y,z), for all z,y € X,

(d) d(z, z) < d(z,y) +d(y, z), for all z,y,z € X.

d is the distance function or metric and X is the underlying set of the metric
space (X, d).

(b) We verify that dj, satisfies all the axioms listed above.
(a) dig(z,y) = kd(z,y) > 0, for all z,y € X, since k > 0 and d(z,y) > 0, for all

z,y € X.

(b) We have di(z,y) = 0 if and only if kd(x,y) = 0 if and only if d(z,y) = 0, since
k > 0, if and only if x = y, since d is a metric on X.

(C) dk(xvy) = kd(xay) = kd(y,%) = dk(yvx)v for all T,y € X.

(d) Finally, dy(z, 2) = kd(z, ) < k(d(z, y)+d(y, )) = kd(@, y)+hd(y, 2) = de(z, y)+
di(y, 2), for all z,y € X.



Problem 4

This completes the proof that dj is a metric on X.

continuous, where the distance function on IR? is

d((z1, 22), (y1,2)) = max{|z; —yil}-

1. Define the function f :IR? — TR by f(x1,29) = 1 + 2. Prove that f is

2. Let (X,d) be a metric space. Define a distance function d* on X x X by

", y) = mac{d(ai, )}

Prove that the function d : (X x X,d*) — (IR, d) is continuous.

Solution:

(a) Let (a1,a2) € IR?. Also let € > 0. Set 6 =

§ > 0. Then we have, for all (x1,22) € R2,

d((x1,22), (a1,a2)) < § = § implies max;—1 2{|z; — a;|} < §, whence |z; —a;| < §,i =

1, 2. Therefore

|f(z1,22) — f(a1,az)|

|z + 22 — a1 — ag

\xl —a1’ + |x2 — a2]
£+ 5
€.

A IA

Hence, f is continuous at all (a1, a2) € R2.

(1 = a1) + (22 — az)]

Let (a1,a2) € X2. Also let € > 0. Set § = § > 0. Then we have, for all (z1,22) € X2,
d*((x1,22), (a1,a2)) < 6 = § implies max;—1 2{d(x;,a;)} < §, whence d(z;,a;) <

5,1 =1,2. Therefore, if d(z1,22) — d(a1,a2) > 0,
ld(z1,22) — d(a1,a2)] = d(z1,22) — d(a1,a2)
S d(:cl,al) (al,ag) +d(a2,a}2)
= d(z1,a1) + d(az, z2)
< §5+5
= 67

and, similarly, if d(xy, z2) — d(a1,a2) <0,

|d(z1,72) — d(ay, az)| —d(z1,72) + d(a1, az)

—d(x1,22) + d(a1, 1) + d(x1, z2)
d(al, $1) + d(.’xg, CL2)

£+

€.

A A

Hence, f is continuous at all (a1, as) € X2

— d(al, ag)

— d(a:Q, CLQ)



Problem 5 Let (X,d1) and (Y, dz2) be metric spaces. Let f : X — 'Y be continuous. Define
a distance function d on X XY in the standard manner. Prove that the graph I'y of f is a
closed subset of (X x Y, d).

Solution:

We show that I'(f) € X x Y is closed in (X x Y, d) by showing that the limit of every
converging sequence of points in I'(f) belongs to I'(f).

So suppose that (zn,yn) € I'(f),n = 1,2,..., with (z,yn) — (z,y) € X x Y. Then,
by the definition of I'(f), y, = f(zn),n = 1,2,..., and, by a convergence criterion for the
product space x,, — x and y, — y. Therefore we have

y = limyy
= lim f(x,)
= f(limz,)
= fl2),
which shows that (z,y) € T'(f) and, therefore, T'(f) is closed in X x Y. [



