EXAM 1: SOLUTIONS - MATH 490 INSTRUCTOR: George Voutsadakis

Problem 1 1. Give the definitions of a one-one and of an onto function.

2. Let $f : A \to B$ be a given one-one function and let $\{X_{\alpha}\}_{\alpha \in I}$ be an indexed family of subsets of A. Prove that $f(\bigcap_{\alpha \in I} X_{\alpha}) = \bigcap_{\alpha \in I} f(X_{\alpha})$

Solution:

- (a) A function f: A → B is one-one if, for all x, y ∈ A, x ≠ y implies f(x) ≠ f(y).
 A function f : A → B is onto if, for all b ∈ B, there exists an a ∈ A, such that f(a) = b. An alternative way to express this is to say that f is onto if and only if f(A) = B.
- (b) We show first that $f(\bigcap_{\alpha \in I} X_{\alpha}) \subseteq \bigcap_{\alpha \in I} f(X_{\alpha})$. This part does not require that f be oneone. Suppose $y \in f(\bigcap_{\alpha \in I} X_{\alpha})$. Thus, there exists $x \in \bigcap_{\alpha \in I} X_{\alpha}$), such that y = f(x). But $x \in \bigcap_{\alpha \in I} X_{\alpha}$ if and only if $x \in X_{\alpha}$, for all $\alpha \in I$, whence, y = f(x), implies that $y \in f(X_{\alpha})$, for all $\alpha \in I$, i.e., $y \in \bigcap_{\alpha \in I} f(X_{\alpha})$. This shows that $f(\bigcap_{\alpha \in I} X_{\alpha}) \subseteq \bigcap_{\alpha \in I} f(X_{\alpha})$.

For the reverse inclusion, suppose that $y \in \bigcap_{\alpha \in I} f(X_{\alpha})$. Thus $y \in f(X_{\alpha})$, for all $\alpha \in I$. Hence, there exist $x_{\alpha} \in X_{\alpha}$, such that $f(x_{\alpha}) = y$, for all $\alpha \in I$. But f is one-one, whence $f(x_{\alpha}) = y = f(x_{\beta})$ implies $x_{\alpha} = x_{\beta}$, for all $\alpha, \beta \in I$. That is $x_{\alpha} \in X_{\beta}$, for all $\beta \in I$, i.e., $x_{\alpha} \in \bigcap_{\alpha \in I} X_{\alpha}$, which shows that $y = f(x_{\alpha}) \in f(\bigcap_{\alpha \in I} X_{\alpha})$, and concludes the proof that $\bigcap_{\alpha \in I} f(X_{\alpha}) \subseteq f(\bigcap_{\alpha \in I} X_{\alpha})$.

- **Problem 2** 1. Give the definition of a relation on a set A. Also give the definition of an equivalence relation on A.
 - 2. Let X be the set of functions from the real numbers into the real numbers possessing continuous derivatives. Let R be the subset of $X \times X$ consisting of those pairs (f,g)such that Df = Dg where D maps a function into its derivative. Prove that R is an equivalence relation and describe an equivalence class $\pi(f)$.

Solution:

- (a) A relation R on a set A is a subset of the cartesian product $A \times A$, i.e., $R \subseteq A \times A$. A relation R is an equivalence relation if and only if it is reflexive, symmetric and transitive, i.e., if
 - $(x, x) \in R$, for all $x \in A$,
 - $(x, y) \in R$ implies $(y, x) \in R$, for all $x, y \in A$,

- $(x, y) \in R$ and $(y, z) \in R$ imply $(x, z) \in R$, for all $x, y, z \in A$.
- (b) We first show that R is an equivalence relation: For all $f \in X$, Df = Df, whence $(f, f) \in R$ and R is reflexive. For all $f, g \in X$ with $(f, g) \in R$, we have Df = Dg, whence Dg = Df and, therefore, $(g, f) \in R$ and R is symmetric. Finally, suppose $(f, g) \in R$ and $(g, h) \in R$. We have Df = Dg and Dg = Dh, whence Df = Dh and, therefore, $(f, h) \in R$ and R is transitive. Thus, R is an equivalence relation.

Let $f \in X$. Then we have

$$\begin{aligned} \pi(f) &= \{g \in X : (g, f) \in R\} \\ &= \{g \in X : Dg = Df\} \\ &= \{g \in X : g = f + c, \text{ for some } c \in \mathbb{R}\} \\ &= \{f + c : c \in \mathbb{R}\}. \end{aligned}$$

Problem 3 1. Give the definition of a metric space.

2. Let (X, d) be a metric space. Let k be a positive real number and set $d_k(x, y) = k \cdot d(x, y)$. Prove that (X, d_k) is a metric space.

Solution:

- (a) A pair of objects $\langle X, d \rangle$ consisting of a nonempty set X and a function $d : X \times X \to \mathbb{R}$, where \mathbb{R} is the set of real numbers, is called a **metric space** provided that
 - (a) $d(x, y) \ge 0$, for all $x, y \in X$,
 - (b) d(x,y) = 0 if and only if x = y, for all $x, y \in X$,
 - (c) d(x,y) = d(y,x), for all $x, y \in X$,
 - (d) $d(x,z) \leq d(x,y) + d(y,z)$, for all $x, y, z \in X$.

d is the **distance function** or **metric** and X is the **underlying set** of the metric space $\langle X, d \rangle$.

- (b) We verify that d_k satisfies all the axioms listed above.
 - (a) $d_k(x,y) = kd(x,y) \ge 0$, for all $x, y \in X$, since k > 0 and $d(x,y) \ge 0$, for all $x, y \in X$.
 - (b) We have $d_k(x, y) = 0$ if and only if kd(x, y) = 0 if and only if d(x, y) = 0, since k > 0, if and only if x = y, since d is a metric on X.
 - (c) $d_k(x,y) = kd(x,y) = kd(y,x) = d_k(y,x)$, for all $x, y \in X$.
 - (d) Finally, $d_k(x, z) = kd(x, z) \le k(d(x, y) + d(y, z)) = kd(x, y) + kd(y, z) = d_k(x, y) + d_k(y, z)$, for all $x, y \in X$.

This completes the proof that d_k is a metric on X.

Problem 4 1. Define the function $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x_1, x_2) = x_1 + x_2$. Prove that f is continuous, where the distance function on \mathbb{R}^2 is

$$d((x_1, x_2), (y_1, y_2)) = \max_{i=1,2} \{ |x_i - y_i| \}.$$

2. Let (X, d) be a metric space. Define a distance function d^* on $X \times X$ by

 $d^*(x, y) = \max_i \{ d(x_i, y_i) \}.$

Prove that the function $d: (X \times X, d^*) \to (\mathbb{R}, d)$ is continuous.

Solution:

(a) Let $(a_1, a_2) \in \mathbb{R}^2$. Also let $\epsilon > 0$. Set $\delta = \frac{\epsilon}{2} > 0$. Then we have, for all $(x_1, x_2) \in \mathbb{R}^2$, $d((x_1, x_2), (a_1, a_2)) < \delta = \frac{\epsilon}{2}$ implies $\max_{i=1,2} \{ |x_i - a_i| \} < \frac{\epsilon}{2}$, whence $|x_i - a_i| < \frac{\epsilon}{2}$, i = 1, 2. Therefore

$$|f(x_1, x_2) - f(a_1, a_2)| = |x_1 + x_2 - a_1 - a_2| = |(x_1 - a_1) + (x_2 - a_2)| \leq |x_1 - a_1| + |x_2 - a_2| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence, f is continuous at all $(a_1, a_2) \in \mathbb{R}^2$.

(b) Let $(a_1, a_2) \in X^2$. Also let $\epsilon > 0$. Set $\delta = \frac{\epsilon}{2} > 0$. Then we have, for all $(x_1, x_2) \in X^2$, $d^*((x_1, x_2), (a_1, a_2)) < \delta = \frac{\epsilon}{2}$ implies $\max_{i=1,2} \{ d(x_i, a_i) \} < \frac{\epsilon}{2}$, whence $d(x_i, a_i) < \frac{\epsilon}{2}, i = 1, 2$. Therefore, if $d(x_1, x_2) - d(a_1, a_2) \ge 0$,

$$\begin{aligned} |d(x_1, x_2) - d(a_1, a_2)| &= d(x_1, x_2) - d(a_1, a_2) \\ &\leq d(x_1, a_1) + d(a_1, a_2) + d(a_2, x_2) - d(a_1, a_2) \\ &= d(x_1, a_1) + d(a_2, x_2) \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon, \end{aligned}$$

and, similarly, if $d(x_1, x_2) - d(a_1, a_2) < 0$,

$$\begin{aligned} |d(x_1, x_2) - d(a_1, a_2)| &= -d(x_1, x_2) + d(a_1, a_2) \\ &\leq -d(x_1, x_2) + d(a_1, x_1) + d(x_1, x_2) - d(x_2, a_2) \\ &= d(a_1, x_1) + d(x_2, a_2) \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Hence, f is continuous at all $(a_1, a_2) \in X^2$.

Problem 5 Let (X, d_1) and (Y, d_2) be metric spaces. Let $f : X \to Y$ be continuous. Define a distance function d on $X \times Y$ in the standard manner. Prove that the graph Γ_f of f is a closed subset of $(X \times Y, d)$.

Solution:

We show that $\Gamma(f) \subseteq X \times Y$ is closed in $(X \times Y, d)$ by showing that the limit of every converging sequence of points in $\Gamma(f)$ belongs to $\Gamma(f)$.

So suppose that $(x_n, y_n) \in \Gamma(f), n = 1, 2, ...,$ with $(x_n, y_n) \longrightarrow (x, y) \in X \times Y$. Then, by the definition of $\Gamma(f), y_n = f(x_n), n = 1, 2, ...,$ and, by a convergence criterion for the product space $x_n \longrightarrow x$ and $y_n \longrightarrow y$. Therefore we have

$$y = \lim y_n$$

= $\lim f(x_n)$
= $f(\lim x_n)$
= $f(x)$,

which shows that $(x, y) \in \Gamma(f)$ and, therefore, $\Gamma(f)$ is closed in $X \times Y$.