
EXAM 1: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 1. Give the definitions of a one-one and of an onto function.

2. Let f : A → B be a given one-one function and let {Xα}α∈I be an indexed family of
subsets of A. Prove that f(∩α∈IXα) = ∩α∈If(Xα)

Solution:

(a) A function f : A → B is one-one if, for all x, y ∈ A, x 6= y implies f(x) 6= f(y).

A function f : A → B is onto if, for all b ∈ B, there exists an a ∈ A, such that
f(a) = b. An alternative way to express this is to say that f is onto if and only if
f(A) = B.

(b) We show first that f(∩α∈IXα) ⊆ ∩α∈If(Xα). This part does not require that f be one-
one. Suppose y ∈ f(∩α∈IXα). Thus, there exists x ∈ ∩α∈IXα), such that y = f(x).
But x ∈ ∩α∈IXα if and only if x ∈ Xα, for all α ∈ I, whence, y = f(x), implies
that y ∈ f(Xα), for all α ∈ I, i.e., y ∈ ∩α∈If(Xα). This shows that f(∩α∈IXα) ⊆
∩α∈If(Xα).

For the reverse inclusion, suppose that y ∈ ∩α∈If(Xα). Thus y ∈ f(Xα), for all α ∈ I.
Hence, there exist xα ∈ Xα, such that f(xα) = y, for all α ∈ I. But f is one-one,
whence f(xα) = y = f(xβ) implies xα = xβ, for all α, β ∈ I. That is xα ∈ Xβ, for all
β ∈ I, i.e., xα ∈ ∩α∈IXα, which shows that y = f(xα) ∈ f(∩α∈IXα), and concludes
the proof that ∩α∈If(Xα) ⊆ f(∩α∈IXα).

¥

Problem 2 1. Give the definition of a relation on a set A. Also give the definition of
an equivalence relation on A.

2. Let X be the set of functions from the real numbers into the real numbers possessing
continuous derivatives. Let R be the subset of X ×X consisting of those pairs (f, g)
such that Df = Dg where D maps a function into its derivative. Prove that R is an
equivalence relation and describe an equivalence class π(f).

Solution:

(a) A relation R on a set A is a subset of the cartesian product A×A, i.e., R ⊆ A×A.
A relation R is an equivalence relation if and only if it is reflexive, symmetric and
transitive, i.e., if

• (x, x) ∈ R, for all x ∈ A,

• (x, y) ∈ R implies (y, x) ∈ R, for all x, y ∈ A,
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• (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R, for all x, y, z ∈ A.

(b) We first show that R is an equivalence relation: For all f ∈ X, Df = Df, whence
(f, f) ∈ R and R is reflexive. For all f, g ∈ X with (f, g) ∈ R, we have Df = Dg,
whence Dg = Df and, therefore, (g, f) ∈ R and R is symmetric. Finally, suppose
(f, g) ∈ R and (g, h) ∈ R. We have Df = Dg and Dg = Dh, whence Df = Dh and,
therefore, (f, h) ∈ R and R is transitive. Thus, R is an equivalence relation.

Let f ∈ X. Then we have

π(f) = {g ∈ X : (g, f) ∈ R}
= {g ∈ X : Dg = Df}
= {g ∈ X : g = f + c, for some c ∈ IR}
= {f + c : c ∈ IR}.

¥

Problem 3 1. Give the definition of a metric space.

2. Let (X, d) be a metric space. Let k be a positive real number and set dk(x, y) =
k · d(x, y). Prove that (X, dk) is a metric space.

Solution:

(a) A pair of objects 〈X, d〉 consisting of a nonempty set X and a function d : X×X → IR,
where IR is the set of real numbers, is called a metric space provided that

(a) d(x, y) ≥ 0, for all x, y ∈ X,

(b) d(x, y) = 0 if and only if x = y, for all x, y ∈ X,

(c) d(x, y) = d(y, x), for all x, y ∈ X,

(d) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

d is the distance function or metric and X is the underlying set of the metric
space 〈X, d〉.

(b) We verify that dk satisfies all the axioms listed above.

(a) dk(x, y) = kd(x, y) ≥ 0, for all x, y ∈ X, since k > 0 and d(x, y) ≥ 0, for all
x, y ∈ X.

(b) We have dk(x, y) = 0 if and only if kd(x, y) = 0 if and only if d(x, y) = 0, since
k > 0, if and only if x = y, since d is a metric on X.

(c) dk(x, y) = kd(x, y) = kd(y, x) = dk(y, x), for all x, y ∈ X.

(d) Finally, dk(x, z) = kd(x, z) ≤ k(d(x, y)+d(y, z)) = kd(x, y)+kd(y, z) = dk(x, y)+
dk(y, z), for all x, y ∈ X.
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This completes the proof that dk is a metric on X.

¥

Problem 4 1. Define the function f : IR2 → IR by f(x1, x2) = x1 + x2. Prove that f is
continuous, where the distance function on IR2 is

d((x1, x2), (y1, y2)) = max
i=1,2

{|xi − yi|}.

2. Let (X, d) be a metric space. Define a distance function d∗ on X ×X by

d∗(x, y) = max
i
{d(xi, yi)}.

Prove that the function d : (X ×X, d∗) → (IR, d) is continuous.

Solution:

(a) Let (a1, a2) ∈ IR2. Also let ε > 0. Set δ = ε
2 > 0. Then we have, for all (x1, x2) ∈ IR2,

d((x1, x2), (a1, a2)) < δ = ε
2 implies maxi=1,2{|xi − ai|} < ε

2 , whence |xi − ai| < ε
2 , i =

1, 2. Therefore

|f(x1, x2)− f(a1, a2)| = |x1 + x2 − a1 − a2|
= |(x1 − a1) + (x2 − a2)|
≤ |x1 − a1|+ |x2 − a2|
< ε

2 + ε
2

= ε.

Hence, f is continuous at all (a1, a2) ∈ IR2.

(b) Let (a1, a2) ∈ X2. Also let ε > 0. Set δ = ε
2 > 0. Then we have, for all (x1, x2) ∈ X2,

d∗((x1, x2), (a1, a2)) < δ = ε
2 implies maxi=1,2{d(xi, ai)} < ε

2 , whence d(xi, ai) <
ε
2 , i = 1, 2. Therefore, if d(x1, x2)− d(a1, a2) ≥ 0,

|d(x1, x2)− d(a1, a2)| = d(x1, x2)− d(a1, a2)
≤ d(x1, a1) + d(a1, a2) + d(a2, x2)− d(a1, a2)
= d(x1, a1) + d(a2, x2)
< ε

2 + ε
2

= ε,

and, similarly, if d(x1, x2)− d(a1, a2) < 0,

|d(x1, x2)− d(a1, a2)| = −d(x1, x2) + d(a1, a2)
≤ −d(x1, x2) + d(a1, x1) + d(x1, x2)− d(x2, a2)
= d(a1, x1) + d(x2, a2)
< ε

2 + ε
2

= ε.

Hence, f is continuous at all (a1, a2) ∈ X2.
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Problem 5 Let (X, d1) and (Y, d2) be metric spaces. Let f : X → Y be continuous. Define
a distance function d on X × Y in the standard manner. Prove that the graph Γf of f is a
closed subset of (X × Y, d).

Solution:
We show that Γ(f) ⊆ X × Y is closed in (X × Y, d) by showing that the limit of every

converging sequence of points in Γ(f) belongs to Γ(f).
So suppose that (xn, yn) ∈ Γ(f), n = 1, 2, . . . , with (xn, yn) −→ (x, y) ∈ X × Y. Then,

by the definition of Γ(f), yn = f(xn), n = 1, 2, . . . , and, by a convergence criterion for the
product space xn −→ x and yn −→ y. Therefore we have

y = lim yn

= lim f(xn)
= f(limxn)
= f(x),

which shows that (x, y) ∈ Γ(f) and, therefore, Γ(f) is closed in X × Y. ¥
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