EXAM 3: SOLUTIONS - MATH 490 INSTRUCTOR: George Voutsadakis

Problem 1 1. Give the definition of the **product** of finitely many topological spaces.

2. Prove that a subset F of $X = \prod_{i=1}^{n} X_i$ is closed if and only if F is an intersection of sets, each of which is a finite union of sets of the form $F_1 \times \cdots \times F_n$, where each F_i is a closed subset of X_i .

Solution:

- (a) The topological space $\langle X, \mathcal{T} \rangle$, where \mathcal{T} is the collection of all subsets of X that are unions of sets of the form $O_1 \times \ldots \times O_n$, each O_i an open subset of X_i , is called the *product* of the topological spaces $\langle X_i, \mathcal{T}_i \rangle$, $i = 1, 2, \ldots, n$.
- (b) F is closed in $X = \prod_{i=1}^{n} X_i$ if and only if X F is open in X if and only if $X F = \bigcup_{j \in J} (O_1^j \times \ldots \times O_n^j)$ for open $O_i^j, j \in J$, in $X_i, i = 1, \ldots, n$, if and only if $F = X \bigcup_{j \in J} (O_1^j \times \ldots \times O_n^j)$ if and only if $F = \bigcap_{j \in J} (X O_1^j \times \ldots \times O_n^j)$ if and only if $F = \bigcap_{j \in J} \bigcup_{i=1}^{n} (X_1 \times \ldots \times X_{i-1} \times (X_i O_i^j) \times X_{i+1} \times \ldots \times X_n)$. Note that $X_1 \times \ldots \times X_{i-1} \times (X_i O_i^j) \times X_{i+1} \times \ldots \times X_n$ is closed in X, whence the conclusion follows.

Problem 2 1. Give the definition of a category.

2. Let C be an arbitrary category and X an object in C. Verify that the set of isomorphisms in H(X, X) is a group under the operation of category composition.

Solution:

- (a) A category C is a collection of objects A whose members are called the *objects* of the category and for each ordered pair (X, Y) of objects of the category a set H(X, Y) called the maps of X into Y together with a rule of composition which associates to each $f \in H(X, Y)$ and $g \in H(Y, Z)$ a map $gf \in H(X, Z)$. This composition is associative, that is, if $f \in H(X, Y), g \in H(Y, Z), h \in H(Z, W)$, then h(gf) = (hg)f and identities exist, that is, for each object $X \in A$ there is an element $1_X \in H(X, X)$ such that for all $g \in H(X, Y), g1_X = g$ and for all $h \in H(W, X), 1_X h = h$.
- (b) Let $f, g, h \in H(X, X)$. Then h(gf) = (hg)f, by the associativity of the category composition. 1_X acts as an identity in H(X, X) under composition, by the identity category axiom, and, for every f, since f is an isomorphism, there exists an f^{-1} , such that $ff^{-1} = f^{-1}f = 1_X$. Therefore the isomorphisms of H(X, X) form a group under composition.

Problem 3 1. Give the definition of a connected topological space.

2. Show that the set \mathbf{Q} of the rational numbers with the subspace topology inherited from the usual topology of the real numbers is disconnected.

Solution:

- (a) A topological space is said to be *connected* if the only two subsets of X that are simultaneously open and closed are X itself and the empty set \emptyset .
- (b) Consider the following two subsets of Q: (-∞, √2) ∩ Q and (√2, +∞) ∩ Q. These are two nonempty disjoint relatively open subsets of Q whose union is all of Q. Therefore Q is disconnected.
- **Problem 4** 1. Give a function f from a closed interval of real numbers with the usual topology into the set of real numbers, also with the usual topology, with a connected graph that is not continuous.
 - 2. Let X be the set of real numbers with the topology $\mathcal{T} = \{U \subset X : 0 \in U\} \cup \{\emptyset\}$. Is the space (X, \mathcal{T}) connected? How about the subspace $X \{0\}$?

Solution:

- (a) Define $f : [0,1] \to \mathbb{R}$, by $f(x) = \sin \frac{1}{x}$, if $x \neq 0$, and f(0) = 0. Then the graph of $f, G_f = \{(x, f(x)) : x \in [0,1]\}$, is a connected subset of the plane with the usual topology, since $(0,0) \in \overline{G_f \{(0,0)\}}$ and $G_f \{(0,0)\}$ is obviously connected, but f is not continuous at x = 0.
- (b) ⟨X, T⟩ is connected, since, if P, Q are nonempty open subsets of ⟨X, T⟩, 0 ∈ P ∩ Q ≠ Ø.
 X {0} is not connected, however, since P = (-∞, 0) = (-∞, 0] ∩ (X {0}) and Q = (0, ∞) = [0, ∞) ∩ (X {0}) are two nonempty disjoint relatively open subsets of X {0} such that P ∪ Q = X {0}.

Problem 5 1. Give the definition of a path-connected space.

2. Let $\{X_{\alpha}\}_{\alpha \in A}$ be an indexed family of topological spaces and set $X = \prod_{\alpha \in A} X_{\alpha}$. For each $\alpha \in A$ let $f_{\alpha} : I \to X_{\alpha}$ be a path in X_{α} . Set $(f_A(t))(\alpha) = f_{\alpha}(t)$ so that $f_A : I \to X$. Prove that f_A is a path in X. Prove that if each X_{α} is path-connected, so is X.

Solution:

- (a) A topological space is *path-connected* if, for each pair of points $u, v \in X$, there is a path f connecting u to v.
- (b) Since every projection $(p_{\alpha}f_A(t) = p_{\alpha}(f_A(t)) = f_{\alpha}(t)$ is continuous, the function $f_A : I \to X$ is continuous.

Let $x = (x_{\alpha})_{\alpha \in I}$, $y = (y_{\alpha})_{\alpha \in I} \in X$. Since X_{α} is path-connected, there exists $f_{\alpha} : I \to X_{\alpha}$, such that $f_{\alpha}(0) = x_{\alpha}$ and $f_{\alpha}(1) = y_{\alpha}$, for all $\alpha \in I$. Then $f_A : I \to X$, with $(f_A(t))(\alpha) = f_{\alpha}(t)$ is a path in X, such that $f_A(0) = x$ and $f_A(1) = y$. Therefore X is also path-connected.