EXAM 2 - MATH 490

Friday, March 21, 2003

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 8 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Give the definition of a **topological space**.
 - (b) Let X be an arbitrary set. Let \mathcal{T} be the collection of all subsets of X whose complements are either finite or all of X. Then (X, \mathcal{T}) is a topological space.
- 2. (a) Give the definition of a **metrizable** topological space.
 - (b) Prove that for each set X, the topological space $(X, 2^X)$ is metrizable.
- 3. (a) Give the definition of a **neighborhood space**.
 - (b) Given a real number x, call a subset N of \mathbb{R} a neighborhood of x if $y \ge x$ implies $y \in N$. Prove that this definition of neighborhood yields a neighborhood space. Describe the corresponding topological space.
- 4. (a) Let (X, \mathcal{T}) be a topological space and $A \subset X$. Give the definitions of the closure, interior and boundary of A.
 - (b) In \mathbb{R}^3 with the usual topology, let A be the set of points $x = (x_1, x_2, x_3)$ such that $x_3 = 0$. Prove that $Int(A) = \emptyset$, Bdry(A) = A and $\overline{A} = A$.
- 5. (a) Give the definition of a **Hausdorff space**.
 - (b) Prove that a subspace of a Hausdorff space is a Hausdorff space.