HOMEWORK 1 - MATH 490 DUE DATE: Monday, January, 27 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. GOOD LUCK!!

- 1. Let $X \subset A, Y \subset B$. Prove that $C(X \times Y) = A \times C(Y) \cup C(X) \times B$.
- 2. Let $f : A \to B$ be given and let $\{X_{\alpha}\}_{\alpha \in I}$ be an indexed family of subsets of A. Prove that
 - (a) $f(\bigcup_{\alpha \in I} X_{\alpha}) = \bigcup_{\alpha \in I} f(X_{\alpha})$
 - (b) $f(\bigcap_{\alpha \in I} X_{\alpha}) \subset \bigcap_{\alpha \in I} f(X_{\alpha})$
 - (c) If $f: A \to B$ is one-one, then $f(\bigcap_{\alpha \in I} X_{\alpha}) = \bigcap_{\alpha \in I} f(X_{\alpha})$.
- 3. Let $f: X \to Y$ be a function from a set X onto a set Y. Let R be the subset of $X \times X$ consisting of those pairs (x, x'), such that f(x) = f(x'). Prove that R is an equivalence relation. Let $\pi : X \to X/R$ be the projection. Verify that, if $\alpha \in X/R$ is an equivalence class, to define $F(\alpha) = f(a)$, whenever $\alpha = \pi(a)$, establishes a well-defined function $F: X/R \to Y$ which is one-one and onto.
- 4. Let \mathbb{R} be the real numbers and ∞ an object not in \mathbb{R} . Define a set $\mathbb{R}^* = \mathbb{R} \cup \{\infty\}$. Let a, b, c, d be real numbers. Let $f : \mathbb{R}^* \to \mathbb{R}^*$ be a function defined by $f(x) = \frac{ax+b}{cx+d}$ when $x \neq -\frac{d}{c}, \infty$ while $f(-\frac{d}{c}) = \infty$ and $f(\infty) = \frac{a}{c}$. Prove that f has an inverse provided that $ad bc \neq 0$.
- 5. Let m, n be positive integers. Let X be a set with m distinct elements and Y a set with n distinct elements. How many distinct functions are there from X to Y? Let A be a subset of X with r distinct elements, $0 \le r < m$ and $f: A \to Y$. How many distinct extensions of f to X are there?
- 6. Let $\{X_{\alpha}\}_{\alpha \in I}$ be an indexed family of sets and let $I = I_1 \cup I_2$, where $I_1 \cap I_2 = \emptyset$. Show that there is a one-one mapping of $(\prod_{\alpha \in I_1} X_{\alpha}) \times (\prod_{\alpha \in I_2} X_{\alpha})$ onto $\prod_{\alpha \in I} X_{\alpha}$.

7. Prove that (\mathbb{R}^n, d'') is a metric space, where the function d'' is defined by the correspondence

$$d''(x,y) = \sum_{i=1}^{n} |x_i - y_i|,$$

for $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$. In (\mathbb{R}^2, d'') determine the shape and position of the set of points x, such that $d''(x, a) \leq 1$ for a specific point $a \in \mathbb{R}^2$.

8. (a) Let X be the set of all continuous functions $f:[a,b] \to \mathbb{R}$. For $f,g \in X$, define

$$d(f,g) = \int_a^b |f(t) - g(t)| dt.$$

Using appropriate theorems from calculus, prove that (X, d) is a metric space.

(b) Let X be a set. For $x, y \in X$ define the function d by

$$d(x, x) = 0$$
, and $d(x, y) = 1$, if $x \neq y$,

Prove that (X, d) is a metric space.