
HOMEWORK 1: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Let X ⊂ A, Y ⊂ B. Prove that C(X × Y ) = A× C(Y ) ∪ C(X)×B.

Solution: We show first that C(X×Y ) ⊆ A×C(Y )∪C(X)×B. Let (a, b) ∈ C(X×Y ).
Then (a, b) 6∈ X × Y. Therefore a 6∈ X or b 6∈ Y . So we study these two cases:

If a 6∈ X, then a ∈ C(X). Since b ∈ B, we then have (a, b) ∈ C(X) × B, whence
(a, b) A× C(Y ) ∪ C(X)×B, as was to be shown.

If, on the other hand, b 6∈ Y, then b ∈ C(Y ), whence, since a ∈ A, (a, b) ∈ A × C(Y )
and, therefore, (a, b) ∈ A× C(Y ) ∪ C(X)×B, as well.

Therefore, in both cases, (a, b) ∈ A × C(Y ) ∪ C(X) × B, and we have C(X × Y ) ⊆
A× C(Y ) ∪ C(X)×B.

Conversely, we need to show that A×C(Y )∪C(X)×B ⊆ C(X × Y ). So suppose that
(a, b) ∈ A × C(Y ) ∪ C(X) × B. Then (a, b) ∈ A × C(Y ) or (a, b) ∈ C(X) × B. We again
consider these two cases separately.

If (a, b) ∈ A × C(Y ), then a ∈ A and b ∈ C(Y ), i.e., a ∈ A and b 6∈ Y, whence
(a, b) 6∈ X × Y and, therefore (a, b) ∈ C(X × Y ).

If, on the other hand, (a, b) ∈ C(X)×B, then a ∈ C(X) and b ∈ B, whence a 6∈ X and
b ∈ B. Thus, (a, b) 6∈ X × Y, which shows that (a, b) ∈ C(X × Y ).

Thus, in both cases, (a, b) ∈ C(X × Y ) and we have that A × C(Y ) ∪ C(X) × B ⊆
C(X × Y ). ¥

Problem 2 Let f : A → B be given and let {Xα}α∈I be an indexed family of subsets of A.
Prove that

(a) f(∪α∈IXα) = ∪α∈If(Xα)

(b) f(∩α∈IXα) ⊂ ∩α∈If(Xα)

(c) If f : A → B is one-one, then f(∩α∈IXα) = ∩α∈If(Xα).

Solution:

(a)

b ∈ f(∪α∈IXα) iff ∃a ∈ ∪α∈IXα : b = f(a)
iff ∃α ∈ I∃a ∈ Xα : b = f(a)
iff ∃α ∈ I : b ∈ f(Xα)
iff b ∈ ∪α∈If(Xα)

(b) Suppose that b ∈ f(∩α∈IXα). Then, there exists an a ∈ ∩α∈IXα, such that b = f(a).
But then a ∈ Xα for all α ∈ I and b = f(a). Therefore b ∈ f(Xα), for all α ∈ I. Thus
b ∈ ∩α∈If(Xα). Thus, we have shown that f(∩α∈IXα) ⊂ ∩α∈If(Xα).
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(c) Note that, by part (b), f(∩α∈IXα) ⊂ ∩α∈If(Xα), even without the assumption that
f is one-one.

For the reverse inclusion, suppose that f : A → B is one-one and let a ∈ ∩α∈If(Xα).
Then, a ∈ f(Xα), for all α ∈ I. Thus, for all α ∈ I, there exists aα ∈ Xα, such that
b = f(aα). Since b = f(aα), for all α ∈ I, aα ∈ Xα ⊆ A, and f : A → B is one-one,
it follows that aα = aα′ , for all α, α′ ∈ I. hence aα ∈ ∩α∈IXα, which, together with
b = f(aα), shows that b ∈ f(∩α∈IXα). Therefore ∩α∈If(Xα) ⊂ f(∩α∈IXα) if f is
one-one. ¥

Problem 3 Let f : X → Y be a function from a set X onto a set Y. Let R be the subset
of X × X consisting of those pairs (x, x′), such that f(x) = f(x′). Prove that R is an
equivalence relation. Let π : X → X/R be the projection. Verify that, if α ∈ X/R is an
equivalence class, to define F (α) = f(a), whenever α = π(a), establishes a well-defined
function F : X/R → Y which is one-one and onto.

Solution: We have f(x) = f(x), whence xRx and R is reflexive. If xRy, then f(x) =
f(y), whence f(y) = f(x), i.e., yRx and R is symmetric. Finally, if xRy and yRz, then
f(x) = f(y) and f(y) = f(z), whence f(x) = f(z) and xRz. Thus R is also transitive, i.e.,
it is an equivalence relation on X.

First, we show that F is well-defined. Suppose, for this purpose, that x, y ∈ X, such that
xRy. We need to show that F (x) = F (y). Since xRy, we have f(x) = f(y), by the definition
of R, whence F (x) = f(x) = f(y) = F (y), by the definition of F, and F is well-defined.

Next, F is onto, since, for y ∈ Y, there exists an x ∈ X, such that y = f(x), by the fact
that f is onto. But then F (x/R) = f(x) = y.

Finally, F is one-one, since, if F (x/R) = F (y/R), then f(x) = f(y), whence xRy, i.e.,
x/R = y/R. ¥

Problem 4 Let IR be the real numbers and ∞ an object not in IR. Define a set IR∗ = IR ∪
{∞}. Let a, b, c, d be real numbers. Let f : IR∗ → IR∗ be a function defined by f(x) = ax+b

cx+d

when x 6= −d
c ,∞ while f(−d

c ) = ∞ and f(∞) = a
c . Prove that f has an inverse provided

that ad− bc 6= 0.

Solution: Since ad − bc 6= 0, not both a and c can be zero. Therefore, we may define
the function g : IR∗ → IR∗, such that

g(x) =
−dx + b

cx− a
, if x 6= a

c
,∞,

while g(a
c ) = ∞ and g(∞) = −d

c . Now it is not difficult to check that

g ◦ f = 1IR∗ and f ◦ g = 1IR∗ .

For instance, for the first equation, for all x 6= −d
c ,∞, we have

g(f(x)) = g(
ax + b

cx + d
) =

−dax+b
cx+d + b

cax+b
cx+d − a

=
−dax− db + bcx + bd

cax + cb− acx− ad
=

(bc− da)x
bc− da

= x = 1IR∗(x).
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Problem 5 Let m,n be positive integers. Let X be a set with m distinct elements and Y
a set with n distinct elements. How many distinct functions are there from X to Y ? Let A
be a subset of X with r distinct elements, 0 ≤ r < m and f : A → Y. How many distinct
extensions of f to X are there?

Solution: Since for each element of X we have n distinct choices for its image under
f, the multiplication principle gives nm distinct functions from X to Y .

In the second case, since the functions have to agree with f on A, there is only one
choice for the elements of A, but n different choices for every element in X − A. Thus, in
this case, there are nm−r distinct extensions of f to X. ¥

Problem 6 Let {Xα}α∈I be an indexed family of sets and let I = I1∪I2, where I1∩I2 = ∅.
Show that there is a one-one mapping of (

∏
α∈I1

Xα)× (
∏

α∈I2
Xα) onto

∏
α∈I Xα.

Solution: Define F : (
∏

α∈I1
Xα)× (

∏
α∈I2

Xα) → ∏
α∈I Xα by

F (f, g)(α) =
{

f(α), if α ∈ I1

g(α), if α ∈ I2
,

for all f ∈ ∏
α∈I1

Xα, g ∈ ∏
α∈I2

Xα.

It is not difficult to show that F is one-one and onto.
For one-one, suppose that F (f, g) = F (h, k). Then F (f, g)(α) = F (h, k)(α), for all

α ∈ I1, and F (f, g)(α) = F (h, k)(α), for all α ∈ I2. Therefore, f(α) = h(α), for all α ∈ I1,
and g(α) = k(α), for all α ∈ I2. Hence f = h and g = k, whence (f, g) = (h, k), as needed.

For onto, suppose that f ∈ ∏
α∈I Xα. Then, for f |I1 ∈

∏
α∈I1

Xα and f |I2 ∈
∏

α∈I2
Xα,

we have F (f |I1 ∈
∏

α∈I1
Xα, f |I2 ∈

∏
α∈I2

Xα) = f, and F is onto, as required. ¥

Problem 7 Prove that (IRn, d′′) is a metric space, where the function d′′ is defined by the
correspondence

d′′(x, y) =
n∑

i=1

|xi − yi|,

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ IRn. In (IR2, d′′) determine the shape and
position of the set of points x, such that d′′(x, a) ≤ 1 for a specific point a ∈ IR2.

Solution: For the first property, |xi − yi| ≥ 0, for all i = 1, . . . , n, whence d′′(x, y) =∑n
i=1 |xi − yi| ≥ 0. For the second property, if x = y, xi = yi, for all i = 1, . . . , n, whence

|xi−yi| = 0, for all i = 1, . . . , n, and, therefore, d′′(x, y) =
∑n

i=1 |xi−yi| = 0, and, conversely,
if d′′(x, y) =

∑n
i=1 |xi − yi| = 0, then, since, |xi − yi| ≥ 0, for all i = 1, . . . , n, we must have

|xi − yi| = 0, for all i = 1, . . . , n, whence xi = yi, for all i = 1, . . . , n, i.e., x = y. Symmetry
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is obvious, since |xi − yi| = |yi − xi|, for all i = 1, . . . , n. Finally, for the triangle inequality,
we have

d′′(x, z) =
∑n

i=1 |xi − zi|
≤ ∑n

i=1(|xi − yi|+ |yi − zi|)
=

∑n
i=1 |xi − yi|+

∑n
i=1 |yi − zi|

= d′′(x, y) + d′′(y, z).

Now, let a = (a1, . . . , an) ∈ IRn. Then d′′(x, a) ≤ 1, whence
∑n

i=1 |xi − ai| ≤ 1. Thus
{x ∈ IRn : d′′(x, a) ≤ 1} = {x ∈ IRn :

∑n
i=1 |xi − ai| ≤ 1}, which is an n-cube centered at a

with diagonals of length 2 parallel to the coordinate axes. ¥

Problem 8 (a) Let X be the set of all continuous functions f : [a, b] → IR. For f, g ∈ X,
define

d(f, g) =
∫ b

a
|f(t)− g(t)|dt.

Using appropriate theorems from calculus, prove that (X, d) is a metric space.

(b) Let X be a set. For x, y ∈ X define the function d by

d(x, x) = 0, and d(x, y) = 1, if x 6= y,

Prove that (X, d) is a metric space.

Solution:

(a) Since |f(t)− g(t)| ≥ 0, for all t ∈ [a, b], then
∫ b
a |f(t)− g(t)|dt ≥ 0, whence d(f, g) ≥ 0.

If f = g, then |f(t)− g(t)| = 0, for all t ∈ [a, b], whence d(f, g) =
∫ b
a |f(t)− g(t)|dt =

0. Conversely, if d(f, g) =
∫ b
a |f(t) − g(t)|dt = 0, then, since f, g are continuous,

|f(t)− g(t)| = 0, for all t ∈ [a, b], whence f(t) = g(t), for all t ∈ [a, b], i.e., f = g.

Finally, for the triangle inequality, we have |f(t)− h(t)| ≤ |f(t)− g(t)|+ |g(t)− h(t)|,
for all t ∈ [a, b], whence

∫ b
a |f(t)− h(t)|dt ≤ ∫ b

a (|f(t)− g(t)|+ |g(t)− h(t)|)dt, whence∫ b
a |f(t) − h(t)|dt ≤ ∫ b

a |f(t) − g(t)|dt +
∫ b
a |g(t) − h(t)|dt, and, therefore, d(f, g) ≤

d(f, g) + d(g, h).

(b) Clearly, d(x, y) ≥ 0, for all x, y ∈ X. Also, it is obvious that d(x, y) = 0 if and only if
x = y and that d(x, y) = d(y, x), for all x, y ∈ X. For the triangle inequality, if x 6= y
or y 6= z, then d(x, y)+d(y, z) ≥ 1 ≥ d(x, z) and we are done. The only remaining case
is when x = y and y = z, whence x = z and we have d(x, z) = 0 = d(x, y) + d(y, z),
as required. ¥
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