HOMEWORK 1: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Let X C A,Y C B. Prove that C(X xY)=Ax C(Y)UC(X) x B.

Solution: We show first that C(X xY) C AxC(Y)UC(X) x B. Let (a,b) € C(X xY).
Then (a,b) ¢ X x Y. Therefore a ¢ X or b ¢ Y. So we study these two cases:

If a ¢ X, then a € C(X). Since b € B, we then have (a,b) € C(X) x B, whence
(a,b) Ax C(Y)UC(X) x B, as was to be shown.

If, on the other hand, b ¢ Y, then b € C(Y), whence, since a € A, (a,b) € A x C(Y)
and, therefore, (a,b) € A x C(Y)UC(X) x B, as well.

Therefore, in both cases, (a,b) € A x C(Y)U C(X) x B, and we have C(X x Y) C
AxCY)uC(X)x B

Conversely, we need to show that A x C(Y)UC(X) x B C C(X xY). So suppose that
(a,b) e Ax C(Y)UC(X) x B. Then (a,b) € Ax C(Y) or (a,b) € C(X) x B. We again
consider these two cases separately.

If (a,b) € AxC(Y), then a € Aand b € C(Y), ie., a € A and b ¢ Y, whence
(a,b) ¢ X x Y and, therefore (a,b) € C(X xY).

If, on the other hand, (a,b) € C(X) x B, then a € C(X) and b € B, whence a ¢ X and
b € B. Thus, (a,b) € X x Y, which shows that (a,b) € C(X xY).

Thus, in both cases, (a,b) € C(X xY) and we have that A x C(Y)UC(X) x B C
C(X xY). m

Problem 2 Let f : A — B be given and let {Xy}aer be an indexed family of subsets of A.
Prove that

(a) f(UCMEIXa) = UaEIf(Xa)

(b) f(ﬂCMGIXa) C ﬂaEIf(Xa)

(c) If f : A — B is one-one, then f(NacrXa) = Nacrf(Xa).

Solution:
(a)

b€ f(UnerXa) T Fa € Uger Xy : b= f(a)
iff Jaeldae X,:b= f(a)
iff Jael:be f(Xa)
iff b€ Unerf(Xa)

(b) Suppose that b € f(NaerXa). Then, there exists an a € NyerXq, such that b = f(a).
But then a € X, for all @ € I and b = f(a). Therefore b € f(X,), for all « € I. Thus
b € Naerf(Xa). Thus, we have shown that f(NaerXa) C Naerf(Xa)-



(c) Note that, by part (b), f(NacrXa) C Nacrf(Xa), even without the assumption that
f is one-one.

For the reverse inclusion, suppose that f: A — B is one-one and let a € Naerf(Xa).
Then, a € f(X,), for all « € I. Thus, for all a € I, there exists a, € X, such that
b= f(aa). Since b = f(a,), for all « € I, aq € Xo € A, and f : A — B is one-one,
it follows that a, = a., for all a,’ € I. hence a, € NyerXa, which, together with
b = f(aa), shows that b € f(NaerXa). Therefore Nacrf(Xa) C f(NaerXa) if f is
one-one. |

Problem 3 Let f : X — Y be a function from a set X onto a set' Y. Let R be the subset
of X x X consisting of those pairs (x,2'), such that f(z) = f(a'). Prove that R is an
equivalence relation. Let w : X — X/R be the projection. Verify that, if « € X/R is an
equivalence class, to define F(a) = f(a), whenever a = 7(a), establishes a well-defined
function F : X/R —'Y which is one-one and onto.

Solution: We have f(z) = f(z), whence xRz and R is reflexive. If xRy, then f(z) =
f(y), whence f(y) = f(x), i.e., yRzr and R is symmetric. Finally, if xRy and yRz, then
f(z) = f(y) and f(y) = f(z), whence f(z) = f(z) and zRz. Thus R is also transitive, i.e.,
it is an equivalence relation on X.

First, we show that F' is well-defined. Suppose, for this purpose, that x,y € X, such that
xRy. We need to show that F'(z) = F(y). Since xRy, we have f(z) = f(y), by the definition
of R, whence F(z) = f(z) = f(y) = F(y), by the definition of F, and F' is well-defined.

Next, F' is onto, since, for y € Y, there exists an = € X, such that y = f(z), by the fact
that f is onto. But then F(z/R) = f(x) = y.

Finally, F' is one-one, since, if F'(z/R) = F(y/R), then f(x) = f(y), whence xRy, i.e.,
z/R =vy/R. [

Problem 4 Let R be the real numbers and oo an object not in IR. Define a set R* =R U

{o0}. Let a,b,c,d be real numbers. Let f: IR* — IR* be a function defined by f(x) = g’gfjr'g

when x # —g,oo while f(—%) = 00 and f(oco) = 2. Prove that f has an inverse provided
that ad — bc # 0.

Solution: Since ad — bc # 0, not both a and ¢ can be zero. Therefore, we may define
the function g : IR* — IR*, such that

—dr+b
g(l‘):xi—i_? lfl'#g,oo,
cx—a c
while g(%) = oo and g(o0) = —‘EZ. Now it is not difficult to check that
gOfZI]R* and fog:lIR*

For instance, for the first equation, for all x # —%l, oo, we have

ar +b —d§§I§ +b  —dax —db+bex +bd  (bc— da)x
p— p— pu— p— p— p— 1 * .
9(f(=)) g(ca: + d) Cg:fifl —a cax + cb — acx — ad be — da v (%)



Problem 5 Let m,n be positive integers. Let X be a set with m distinct elements and Y
a set with n distinct elements. How many distinct functions are there from X toY ? Let A
be a subset of X with r distinct elements, 0 < r < m and f : A — Y. How many distinct
extensions of f to X are there?

Solution: Since for each element of X we have n distinct choices for its image under
f, the multiplication principle gives n'™ distinct functions from X to Y.

In the second case, since the functions have to agree with f on A, there is only one
choice for the elements of A, but n different choices for every element in X — A. Thus, in
this case, there are n™~" distinct extensions of f to X. |

Problem 6 Let {X,}acr be an indexed family of sets and let I = I; U Iy, where Iy NIy = ().
Show that there is a one-one mapping of (I[,er, Xa) X (I1aer, Xa) onto [ e Xa-

Solution: Define F': ([[,c7, Xa) X (Ilacs, Xa) = [lacr Xa by

fla), ifael

Fifge ={ ok fegh
for all f € [[aer, Xa» 9 € [aer, Xo-

It is not difficult to show that F'is one-one and onto.

For one-one, suppose that F(f,g) = F(h,k). Then F(f,g)(a) = F(h,k)(a), for all
a € I, and F(f,g)(a) = F(h,k)(a), for all o € I5. Therefore, f(a) = h(a), for all a € I,
and g(a) = k(«), for all a € I. Hence f = h and g = k, whence (f, g) = (h, k), as needed.

For onto, suppose that f € [[,c; Xa- Then, for f|1, € [[,er, Xo and flr, € [[aer, Xas
we have F'(f|r, € [[aer, Xo» [l € [laer, Xo) = f, and F is onto, as required. |

Problem 7 Prove that (R",d") is a metric space, where the function d” is defined by the
correspondence

n
d"(z,y) =Y | — uil,
=1

for & = (z1,22,...,2,),y = (Y1,92,...,Yn) € R™. In (IR?,d") determine the shape and
position of the set of points x, such that d"(x,a) < 1 for a specific point a € IR2.

Solution: For the first property, |z; — y;| > 0, for all i = 1,...,n, whence d’(z,y) =
Yoy |xi — il > 0. For the second property, if =y, x; = y;, for all ¢ = 1,...,n, whence
|zi—y;| =0, foralli =1,...,n, and, therefore, d’(z,y) = > 1, |zi—y;| = 0, and, conversely,
if d’(z,y) = > |zi — y;| =0, then, since, |z; —y;| >0, for all i = 1,...,n, we must have
|x; —yi| =0, for alli =1,...,n, whence z; = y;, for alli =1,...,n, i.e.,, x = y. Symmetry



is obvious, since |z; — y;| = |y; — x4|, for all ¢ = 1,... n. Finally, for the triangle inequality,
we have

d"(z,z) D i | — 2l

it (i — il + lyi — 2il)
Yoy |z — il + 200 i — i
d"(z,y) +d"(y, 2).

IIA

Now, let a = (ai,...,a,) € R". Then d’(z,a) < 1, whence > I, |x; — a;] < 1. Thus
{x e R":d"(z,a) <1} ={z e R":> " |z; — a;| <1}, which is an n-cube centered at a
with diagonals of length 2 parallel to the coordinate axes. |

Problem 8 (a) Let X be the set of all continuous functions f : [a,b] — IR. For f,g € X,

define

a(f,g) = /\f (t)|dt.

Using appropriate theorems from calculus, prove that (X, d) is a metric space.

(b) Let X be a set. For x,y € X define the function d by

(a)

dz,z) =0, and d(z,y)=1, ifz#y,

Prove that (X,d) is a metric space.

Solution:
Since | f(t) —g(t)| > 0, for all t € [a, b], then fb |f(t)—g(t)|dt > 0, whence d,(f, g)>0
If f =g, then |f(t) — ()]—Oforallte[ab] whencedfg f]f (t)|dt =
0. Conversely, if d(f,g) f |f(t) (t)|dt = 0, then, since f,g are contlnuous,

|f(t) —g(t)] =0, for all t € [a,b], Whence f(t) =g(t), for all t € [a,b], ie., f=g.
Finally, for the triangle inequality, we have |f(t) — h(t)| < |f(t) — g(¢)| + |g(t) — h(?)],
for all ¢ € [a,b], whence [*|f(t) — h(t)|dt < [2(|f(t) — g(t)| + |g(t) — h(t)|)dt, whence
S, 11 @) = h(oldt < [} |F(t) = g(®)lde + [;'lg(t) — h(t)ldt, and, therefore, d(f.g) <
d(f,9) +d(g,h).

Clearly, d(x,y) > 0, for all z,y € X. Also, it is obvious that d(z,y) = 0 if and only if
x =y and that d(z,y) = d(y, z), for all z,y € X. For the triangle inequality, if z # y
ory # z, then d(x,y)+d(y, z) > 1 > d(x, z) and we are done. The only remaining case
is when z = y and y = z, whence = = z and we have d(z,z) = 0 = d(z,y) + d(y, 2),
as required. |



