
HOMEWORK 2: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Let X be the set of continuous functions f : [a, b] → IR. Let d∗ be the distance
function on X defined by d∗(f, g) =

∫ b
a |f(t) − g(t)|dt, for f, g ∈ X. For each f ∈ X, set

I(f) =
∫ b
a f(t)dt. Prove that the function I : (X, d∗) → (IR, d) is continuous.

Solution:
Let f ∈ X and ε > 0. Take δ = ε > 0. Then, we have, for all g ∈ X, with d∗(f, g) < δ,

i.e., with
∫ b
a |f(t)− g(t)|dt < ε,

d(I(f), I(g)) = | ∫ b
a f(t)dt− ∫ b

a g(t)dt|
= | ∫ b

a (f(t)− g(t))dt|
≤ ∫ b

a |f(t)− g(t)|dt
< ε.

Therefore I is continuous at f and, since f was arbitrary, I : (X, d∗) → (IR, d) is continuous.
¥

Problem 2 Let (Xi, di), (Yi, d
′
i), i = 1, 2, . . . , n be metric spaces. Let fi : Xi → Yi, i =

1, . . . , n be continuous functions. Let X =
∏n

i=1 Xi and Y =
∏n

i=1 Yi and convert X and Y
into metric spaces in the standard manner. Define the function F : X → Y by

F (x1, . . . , xn) = (f1(x1), . . . , fn(xn)).

Prove that F is continuous.

Solution:
Let (x1, . . . , xn) ∈ X and ε > 0. Since fi : Xi → Yi is continuous, for all 1 ≤ i ≤ n,

there exist δi > 0, such that, for all yi ∈ Xi, with di(xi, yi) < δi, d′i(fi(xi), fi(yi)) < ε. Let
δ = mini δi. Then, for all (y1, . . . , yn) ∈ X, with d((x1, . . . , xn), (y1, . . . , yn)) < δ, we have,
maxi di(xi, yi) < δ, whence di(xi, yi) < δ < δi and therefore d′i(fi(xi), fi(yi)) < ε. Hence

d′(F (x1, . . . , xn), F (y1, . . . , yn)) = max
i

d′i(fi(xi), fi(yi)) < ε,

which shows that F is continuous. ¥

Problem 3 Let (X, d) be a metric space such that d(x, y) = 1 whenever x 6= y. Let a ∈ X.
Prove that {a} is a neighborhood of a and constitutes a basis for the system of neighborhoods
at a. Prove that every subset of X is a neighborhood of each of its points.

Solution:
{a} is a neighborhood of a since it contains the open ball B(a; 1

2). In fact, since for all
x 6= a, d(x, a) = 1, we have B(a; 1

2) = {a}. Suppose that U is a neighborhood of a. Then,
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there exists an open ball B(a; r), such that a ∈ B(a; r) ⊆ U. We have that B(a; r) = {a}, if
r < 1 and B(a; r) = X, if r ≥ 1, whence, in every case {a} ⊆ B(a; r) and {a} is a basis for
the system of neighborhoods at a.

Let Y ⊆ X. Then, for all y ∈ Y, y ∈ {y} ⊆ Y, whence Y is a neighborhood of y and,
since y ∈ Y was arbitrary, Y is a neighborhood of each of its points. ¥

Problem 4 1. Let a be a point in a metric space X. Let N be the set of positive integers.
Prove that there is a collection {Bn}n∈N of neighborhoods of a which constitutes a basis
for the system of neighborhoods at a.

2. Let a and b be distinct points of a metric space X. Prove that there are neighborhoods
Na and Nb of a and b, respectively, such that Na ∩Nb = ∅.

Solution:

1. Consider the collection {Bn}n∈N , with Bn = B(a; 1
n). We show that this collection is

a basis for the system of neighborhoods at a. Suppose that U is a neighborhood at a.
Then there exists ε > 0, such that B(a; ε) ⊆ U. Take n > 1

ε , i.e., 1
n < ε. We then have

B(a; 1
n) ⊆ B(a; ε) ⊆ U, whence U contains a member of {Bn}n∈N , which, therefore,

constitutes a basis for the system of neighborhoods at a.

2. Since a 6= b, we must have d(a, b) > 0. Consider the two balls Na = B(a, d(a,b)
2 )

and Nb = B(b, d(a,b)
2 ). Then a ∈ Na, b ∈ Nb, and we also have, for all x ∈ X, such

that x ∈ Na ∩ Nb, x ∈ Na and x ∈ Nb, whence d(a, x) < d(a,b)
2 and d(b, x) < d(a,b)

2 ,

whence d(a, b) ≤ d(a, x)+ d(x, b) < d(a,b)
2 + d(a,b)

2 = d(a, b), a contradiction. Therefore
Na ∩Nb = ∅.

¥

Problem 5 1. Let X1, X2, . . . , Xk be metric spaces and convert X =
∏k

i=1 Xi into a
metric space in the standard manner. Each of the points a1, a2, . . . of a sequence of
points of X has k coordinates; that is an = (an

1 , . . . , an
k) ∈ X,n = 1, 2, . . . . Let c =

(c1, c2, . . . , ck) ∈ X. Prove that limn an = c if and only if limn an
i = ci, i = 1, 2, . . . , k.

2. Prove that a subsequence of a convergent sequence is convergent and converges to the
same limit as the original sequence.

Solution:

1. Suppose that limn an = c. Then, for all ε > 0, there exist N > 0, such that, for all
n > N, d(an, c) < ε, i.e., maxi di(an

i , ci) < ε. Thus di(an
i , ci) ≤ maxi di(an

i , ci) < ε,
which shows that limn an

i = ci, i = 1, 2, . . . , n.

Suppose, conversely, that limn an
i = ci, i = 1, . . . , n. Then, for all ε > 0, there exist

Ni > 0, such that, for all n > Ni, di(an
i , ci) < ε, i = 1, . . . , n. Take N = maxi Ni.

Then, for all n > N ≥ Ni, we have d(an, c) = maxi di(an
i , ci) < ε and, therefore,

limn an = c.
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2. Suppose that, for all ε > 0, there exists N > 0, such that, for all n > N, d(an, l) < ε.
Consider a subsequence {ajn}n∈N of {an}n∈N. Then, setting N ′ : jn > N, for all
n > N ′, we obtain d(ajn , l) < ε, whence {ajn} is also convergent with the same limit
as {an}.

¥

Problem 6 1. A sequence of real numbers a1, a2, . . . is called monotone non-decreasing
if ai ≤ ai+1 for each i and called monotone non-increasing if ai ≥ ai+1 for each
i. A sequence which is either monotone non-decreasing or monotone non-increasing
is called monotone. The sequence is said to be bounded above if there is a number
K such that ai ≤ K for each i and bounded below if there is a number M such that
ai ≥ M for each i. A sequence which is both bounded above and bounded below is called
bounded. Prove that a convergent sequence of real numbers is bounded. Prove that a
monotone non-decreasing sequence of real numbers which is bounded above converges
to a limit a and that a is the least upper bound of the set {a1, a2, . . .}.

2. Let A be a nonempty subset of a metric space (X, d). Define the function f : X → IR
by f(x) = d(x,A). Prove that f is continuous.

Solution:

1. Suppose that {an}n∈N is a convergent sequence of real numbers with limit l. Then,
given ε > 0, there exists N > 0, such that for all n > N, |an− l| < ε, i.e., l− ε < an <
l + ε. Now let M = min {l − ε, a1, . . . , aN} and K = max {l + ε, a1, . . . , aN}. Then we
have that M ≤ an ≤ K, for all n ∈ N, whence {an} is bounded.

Suppose now that {an} is non-decreasing and bounded above and let l be a least
upper bound. Then an ≤ l, for all n ∈ N, and, since l is a least upper bound, for all
ε > 0, there exists N > 0, such that aN > l − ε. But then, for all n > N, we have, by
the bound property and by monotonicity, l− ε < aN ≤ an ≤ l < l+ ε, i.e., |an− l| < ε.
Therefore {an} converges to l.

2. Let x ∈ X. Since d(y, A) = infa∈A d(y,A), for all η > 0, there exists aη ∈ A, such that
d(y, aη) < d(y,A)+η. Now let ε > 0 and suppose that y ∈ X, such that d(x, y) < δ = ε
and also, without loss of generality, that d(x, A) ≥ d(y,A). Then

|f(x)− f(y)| = |d(x,A)− d(y, A)|
= d(x,A)− d(y, A)
= infa∈A d(x, a)− d(y,A)
≤ d(x, aη)− d(y, A)
≤ d(x, y) + d(y, aη)− d(y, A)
< ε + η.

Since η > 0 is arbitrary, this yields that |f(x) − f(y)| ≤ ε, and, therefore, f is
continuous.
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Problem 7 1. Let X be a set and d the distance function on X defined by d(x, x) =
0, d(x, y) = 1 for x 6= y. Prove that each subset of (X, d) is open.

2. Let A be a closed, non-empty subset of the real numbers that has a lower bound. Prove
that A contains its greatest lower bound.

Solution:

1. Let A ⊆ X. Then A =
⋃

a∈A{a} =
⋃

a∈A B(a; 1
2), whence A is open as the union of

open sets.

2. Let b = inf A. Then, for all n > 0, there exists an ∈ A, such that an < b + 1
n , i.e.,

|an − b| < 1
n . Thus {an}n∈N is a sequence in A that converges to b. But A is closed,

whence b ∈ A.

¥

Problem 8 1. For i = 1, 2, . . . , n let the metric space (Xi, di) be topologically equivalent
to the metric space (Yi, d

′
i). Prove that if X =

∏n
i=1 Xi and Y =

∏n
i=1 Yi are con-

verted into metric spaces in the standard manner, then these two metric spaces are
topologically equivalent.

2. Let (Y, d′) be a subspace of (X, d). Let a1, a2, . . . be a sequence of points of Y and let
a ∈ Y. Prove that if limn an = a in (Y, d′) then limn an = a in (X, d).

Solution:

1. Since Xi and Yi are topologically equivalent, there exist bijections fi : Xi → Yi, and
a constant ki, such that, for all xi, yi ∈ Xi, d′i(fi(xi), fi(yi)) < kidi(xi, yi). Define
F : X → Y by F (x1, . . . , xn) = (f1(x1), . . . , fn(xn)), for all (x1, . . . , xn) ∈ X, and set
K = maxi ki. Then we have that F : X → Y is a bijection such that

d′(F (x1, . . . , xn), F (y1, . . . , yn)) = maxi d
′
i(fi(xi), fi(yi))

< maxi kidi(xi, yi)
≤ K maxi di(xi, yi)
= Kd((x1, . . . , xn), (y1, . . . , yn)).

The inverse function property with the corresponding bound law may be proved very
similarly.

2. Let ε > 0. Since limn an = a in Y , there exists N > 0, such that, for all n > N,
d′(an, a) < ε. But then d(an, a) = d′(an, a) < ε, whence limn an = a in X also.

¥
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