HOMEWORK 2: SOLUTIONS - MATH 490 INSTRUCTOR: George Voutsadakis

Problem 1 Let X be the set of continuous functions $f : [a, b] \to \mathbb{R}$. Let d^* be the distance function on X defined by $d^*(f,g) = \int_a^b |f(t) - g(t)| dt$, for $f,g \in X$. For each $f \in X$, set $I(f) = \int_a^b f(t) dt$. Prove that the function $I : (X, d^*) \to (\mathbb{R}, d)$ is continuous.

Solution:

Let $f \in X$ and $\epsilon > 0$. Take $\delta = \epsilon > 0$. Then, we have, for all $g \in X$, with $d^*(f,g) < \delta$, i.e., with $\int_a^b |f(t) - g(t)| dt < \epsilon$,

$$d(I(f), I(g)) = \left| \int_{a}^{b} f(t)dt - \int_{a}^{b} g(t)dt \right|$$

$$= \left| \int_{a}^{b} (f(t) - g(t))dt \right|$$

$$\leq \int_{a}^{b} |f(t) - g(t)|dt$$

$$< \epsilon.$$

Therefore I is continuous at f and, since f was arbitrary, $I: (X, d^*) \to (\mathbb{R}, d)$ is continuous.

Problem 2 Let $(X_i, d_i), (Y_i, d'_i), i = 1, 2, ..., n$ be metric spaces. Let $f_i : X_i \to Y_i, i = 1, ..., n$ be continuous functions. Let $X = \prod_{i=1}^n X_i$ and $Y = \prod_{i=1}^n Y_i$ and convert X and Y into metric spaces in the standard manner. Define the function $F : X \to Y$ by

$$F(x_1,\ldots,x_n)=(f_1(x_1),\ldots,f_n(x_n)).$$

Prove that F is continuous.

Solution:

Let $(x_1, \ldots, x_n) \in X$ and $\epsilon > 0$. Since $f_i : X_i \to Y_i$ is continuous, for all $1 \le i \le n$, there exist $\delta_i > 0$, such that, for all $y_i \in X_i$, with $d_i(x_i, y_i) < \delta_i$, $d'_i(f_i(x_i), f_i(y_i)) < \epsilon$. Let $\delta = \min_i \delta_i$. Then, for all $(y_1, \ldots, y_n) \in X$, with $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) < \delta$, we have, $\max_i d_i(x_i, y_i) < \delta$, whence $d_i(x_i, y_i) < \delta < \delta_i$ and therefore $d'_i(f_i(x_i), f_i(y_i)) < \epsilon$. Hence

$$d'(F(x_1,...,x_n),F(y_1,...,y_n)) = \max_i d'_i(f_i(x_i),f_i(y_i)) < \epsilon,$$

which shows that F is continuous.

Problem 3 Let (X, d) be a metric space such that d(x, y) = 1 whenever $x \neq y$. Let $a \in X$. Prove that $\{a\}$ is a neighborhood of a and constitutes a basis for the system of neighborhoods at a. Prove that every subset of X is a neighborhood of each of its points.

Solution:

 $\{a\}$ is a neighborhood of a since it contains the open ball $B(a; \frac{1}{2})$. In fact, since for all $x \neq a, d(x, a) = 1$, we have $B(a; \frac{1}{2}) = \{a\}$. Suppose that U is a neighborhood of a. Then,

there exists an open ball B(a;r), such that $a \in B(a;r) \subseteq U$. We have that $B(a;r) = \{a\}$, if r < 1 and B(a;r) = X, if $r \ge 1$, whence, in every case $\{a\} \subseteq B(a;r)$ and $\{a\}$ is a basis for the system of neighborhoods at a.

Let $Y \subseteq X$. Then, for all $y \in Y$, $y \in \{y\} \subseteq Y$, whence Y is a neighborhood of y and, since $y \in Y$ was arbitrary, Y is a neighborhood of each of its points.

- **Problem 4** 1. Let a be a point in a metric space X. Let N be the set of positive integers. Prove that there is a collection $\{B_n\}_{n \in N}$ of neighborhoods of a which constitutes a basis for the system of neighborhoods at a.
 - 2. Let a and b be distinct points of a metric space X. Prove that there are neighborhoods N_a and N_b of a and b, respectively, such that $N_a \cap N_b = \emptyset$.

Solution:

- 1. Consider the collection $\{B_n\}_{n \in N}$, with $B_n = B(a; \frac{1}{n})$. We show that this collection is a basis for the system of neighborhoods at a. Suppose that U is a neighborhood at a. Then there exists $\epsilon > 0$, such that $B(a; \epsilon) \subseteq U$. Take $n > \frac{1}{\epsilon}$, i.e., $\frac{1}{n} < \epsilon$. We then have $B(a; \frac{1}{n}) \subseteq B(a; \epsilon) \subseteq U$, whence U contains a member of $\{B_n\}_{n \in N}$, which, therefore, constitutes a basis for the system of neighborhoods at a.
- 2. Since $a \neq b$, we must have d(a,b) > 0. Consider the two balls $N_a = B(a, \frac{d(a,b)}{2})$ and $N_b = B(b, \frac{d(a,b)}{2})$. Then $a \in N_a, b \in N_b$, and we also have, for all $x \in X$, such that $x \in N_a \cap N_b$, $x \in N_a$ and $x \in N_b$, whence $d(a,x) < \frac{d(a,b)}{2}$ and $d(b,x) < \frac{d(a,b)}{2}$, whence $d(a,b) \leq d(a,x) + d(x,b) < \frac{d(a,b)}{2} + \frac{d(a,b)}{2} = d(a,b)$, a contradiction. Therefore $N_a \cap N_b = \emptyset$.

- **Problem 5** 1. Let X_1, X_2, \ldots, X_k be metric spaces and convert $X = \prod_{i=1}^k X_i$ into a metric space in the standard manner. Each of the points a_1, a_2, \ldots of a sequence of points of X has k coordinates; that is $a_n = (a_1^n, \ldots, a_k^n) \in X, n = 1, 2, \ldots$ Let $c = (c_1, c_2, \ldots, c_k) \in X$. Prove that $\lim_n a_n = c$ if and only if $\lim_n a_i^n = c_i, i = 1, 2, \ldots, k$.
 - 2. Prove that a subsequence of a convergent sequence is convergent and converges to the same limit as the original sequence.

Solution:

1. Suppose that $\lim_n a_n = c$. Then, for all $\epsilon > 0$, there exist N > 0, such that, for all n > N, $d(a_n, c) < \epsilon$, i.e., $\max_i d_i(a_i^n, c_i) < \epsilon$. Thus $d_i(a_i^n, c_i) \le \max_i d_i(a_i^n, c_i) < \epsilon$, which shows that $\lim_n a_i^n = c_i, i = 1, 2, ..., n$.

Suppose, conversely, that $\lim_{n} a_{i}^{n} = c_{i}, i = 1, ..., n$. Then, for all $\epsilon > 0$, there exist $N_{i} > 0$, such that, for all $n > N_{i}, d_{i}(a_{i}^{n}, c_{i}) < \epsilon, i = 1, ..., n$. Take $N = \max_{i} N_{i}$. Then, for all $n > N \ge N_{i}$, we have $d(a_{n}, c) = \max_{i} d_{i}(a_{i}^{n}, c_{i}) < \epsilon$ and, therefore, $\lim_{n \to \infty} a_{n} = c$.

2. Suppose that, for all $\epsilon > 0$, there exists N > 0, such that, for all n > N, $d(a_n, l) < \epsilon$. Consider a subsequence $\{a_{j_n}\}_{n \in \mathbb{N}}$ of $\{a_n\}_{n \in \mathbb{N}}$. Then, setting $N' : j_n > N$, for all n > N', we obtain $d(a_{j_n}, l) < \epsilon$, whence $\{a_{j_n}\}$ is also convergent with the same limit as $\{a_n\}$.

- **Problem 6** 1. A sequence of real numbers a_1, a_2, \ldots is called monotone non-decreasing if $a_i \leq a_{i+1}$ for each *i* and called monotone non-increasing if $a_i \geq a_{i+1}$ for each *i*. A sequence which is either monotone non-decreasing or monotone non-increasing is called monotone. The sequence is said to be bounded above if there is a number K such that $a_i \leq K$ for each *i* and bounded below if there is a number M such that $a_i \geq M$ for each *i*. A sequence which is both bounded above and bounded below is called bounded. Prove that a convergent sequence of real numbers is bounded. Prove that a monotone non-decreasing sequence of real numbers which is bounded above converges to a limit *a* and that *a* is the least upper bound of the set $\{a_1, a_2, \ldots\}$.
 - 2. Let A be a nonempty subset of a metric space (X, d). Define the function $f : X \to \mathbb{R}$ by f(x) = d(x, A). Prove that f is continuous.

Solution:

1. Suppose that $\{a_n\}_{n \in \mathbb{N}}$ is a convergent sequence of real numbers with limit l. Then, given $\epsilon > 0$, there exists N > 0, such that for all n > N, $|a_n - l| < \epsilon$, i.e., $l - \epsilon < a_n < l + \epsilon$. Now let $M = \min\{l - \epsilon, a_1, \ldots, a_N\}$ and $K = \max\{l + \epsilon, a_1, \ldots, a_N\}$. Then we have that $M \leq a_n \leq K$, for all $n \in \mathbb{N}$, whence $\{a_n\}$ is bounded.

Suppose now that $\{a_n\}$ is non-decreasing and bounded above and let l be a least upper bound. Then $a_n \leq l$, for all $n \in \mathbf{N}$, and, since l is a least upper bound, for all $\epsilon > 0$, there exists N > 0, such that $a_N > l - \epsilon$. But then, for all n > N, we have, by the bound property and by monotonicity, $l - \epsilon < a_N \leq a_n \leq l < l + \epsilon$, i.e., $|a_n - l| < \epsilon$. Therefore $\{a_n\}$ converges to l.

2. Let $x \in X$. Since $d(y, A) = \inf_{a \in A} d(y, A)$, for all $\eta > 0$, there exists $a_{\eta} \in A$, such that $d(y, a_{\eta}) < d(y, A) + \eta$. Now let $\epsilon > 0$ and suppose that $y \in X$, such that $d(x, y) < \delta = \epsilon$ and also, without loss of generality, that $d(x, A) \ge d(y, A)$. Then

$$\begin{aligned} |f(x) - f(y)| &= |d(x, A) - d(y, A)| \\ &= d(x, A) - d(y, A) \\ &= \inf_{a \in A} d(x, a) - d(y, A) \\ &\leq d(x, a_{\eta}) - d(y, A) \\ &\leq d(x, y) + d(y, a_{\eta}) - d(y, A) \\ &< \epsilon + \eta. \end{aligned}$$

Since $\eta > 0$ is arbitrary, this yields that $|f(x) - f(y)| \leq \epsilon$, and, therefore, f is continuous.

Problem 7 1. Let X be a set and d the distance function on X defined by d(x,x) = 0, d(x,y) = 1 for $x \neq y$. Prove that each subset of (X,d) is open.

2. Let A be a closed, non-empty subset of the real numbers that has a lower bound. Prove that A contains its greatest lower bound.

Solution:

- 1. Let $A \subseteq X$. Then $A = \bigcup_{a \in A} \{a\} = \bigcup_{a \in A} B(a; \frac{1}{2})$, whence A is open as the union of open sets.
- 2. Let $b = \inf A$. Then, for all n > 0, there exists $a_n \in A$, such that $a_n < b + \frac{1}{n}$, i.e., $|a_n b| < \frac{1}{n}$. Thus $\{a_n\}_{n \in \mathbb{N}}$ is a sequence in A that converges to b. But A is closed, whence $b \in A$.

- **Problem 8** 1. For i = 1, 2, ..., n let the metric space (X_i, d_i) be topologically equivalent to the metric space (Y_i, d'_i) . Prove that if $X = \prod_{i=1}^n X_i$ and $Y = \prod_{i=1}^n Y_i$ are converted into metric spaces in the standard manner, then these two metric spaces are topologically equivalent.
 - 2. Let (Y, d') be a subspace of (X, d). Let a_1, a_2, \ldots be a sequence of points of Y and let $a \in Y$. Prove that if $\lim_n a_n = a$ in (Y, d') then $\lim_n a_n = a$ in (X, d).

Solution:

1. Since X_i and Y_i are topologically equivalent, there exist bijections $f_i : X_i \to Y_i$, and a constant k_i , such that, for all $x_i, y_i \in X_i$, $d'_i(f_i(x_i), f_i(y_i)) < k_i d_i(x_i, y_i)$. Define $F : X \to Y$ by $F(x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n))$, for all $(x_1, \ldots, x_n) \in X$, and set $K = \max_i k_i$. Then we have that $F : X \to Y$ is a bijection such that

$$d'(F(x_1,...,x_n),F(y_1,...,y_n)) = \max_i d'_i(f_i(x_i),f_i(y_i)) < \max_i k_i d_i(x_i,y_i) \leq K \max_i d_i(x_i,y_i) = K d((x_1,...,x_n),(y_1,...,y_n)).$$

The inverse function property with the corresponding bound law may be proved very similarly.

2. Let $\epsilon > 0$. Since $\lim_n a_n = a$ in Y, there exists N > 0, such that, for all n > N, $d'(a_n, a) < \epsilon$. But then $d(a_n, a) = d'(a_n, a) < \epsilon$, whence $\lim_n a_n = a$ in X also.