HOMEWORK 3 - MATH 490

DUE DATE: Monday, February 24 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. GOOD LUCK!!

- 1. Let (X, \mathcal{T}) be a topological space that is metrizable. Prove that for each pair a, b of distinct points of X, there are open sets O_a and O_b containing a and b respectively, such that $O_a \cap O_b = \emptyset$. Prove that the topological space of Example 7 on page 72 is not metrizable.
- 2. Let (X, \mathcal{T}) be a topological space. Prove that \emptyset, X are closed sets, that a finite union of closed sets is a closed set, and that an arbitrary intersection of closed sets is a closed set.
- 3. Prove that in a discrete topological space, each subset is simultaneously open and closed.
- 4. A family $\{A_{\alpha}\}_{\alpha \in I}$ of subsets is said to be *mutually disjoint* if for each distinct pair β, γ of indices $A_{\beta} \cap A_{\gamma} = \emptyset$. Prove that for each subset A of a topological space (X, \mathcal{T}) , the three sets $\operatorname{Int}(A)$, $\operatorname{Bdry}(A)$ and $\operatorname{Int}(C(A))$ are mutually disjoint and that $X = \operatorname{Int}(A) \cup \operatorname{Bdry}(A) \cup \operatorname{Int}(C(A))$.
- 5. In the real line prove that the boundary of the open interval (a, b) and the boundary of the closed interval [a, b] is $\{a, b\}$.
- 6. Let A be a subset of a topological space. Prove that $Bdry(A) = \emptyset$ if and only if A is open and closed.
- 7. A subset A of a topological space (X, \mathcal{T}) is said to be *dense in* X if $\overline{A} = X$. Prove that if for each open set O we have $A \cap O = \emptyset$, then A is dense in X.
- 8. Let a function $f: X \to Y$ be given. Prove that $f: (X, 2^X) \to (Y, \mathcal{T}')$ is always continuous, as is $f: (X, \mathcal{T}) \to (Y, \{\emptyset, Y\})$, where \mathcal{T}' is any topology on Y and \mathcal{T} is any topology on X.