HOMEWORK 3: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Let (X,7T) be a topological space that is metrizable. Prove that for each pair
a,b of distinct points of X, there are open sets O, and Oy containing a and b respectively,
such that O, N Oy = (). Prove that the topological space of Example 7 on page 72 is not
metrizable.

Solution: Let (X, d) be the metric space whose open sets form the collection 7. Con-
sider a,b € X. The two open balls O, = B(a; d((;’b)) and O, = B(b; d((;’b)) are in 7 and
a € Og,b € Oy, with A, N Oy = 0.

The space is (N*,7) where 7 = {0,01,04,...}, with O, = {n,n+1,...},n > 1. It is
clearly not metrizable since given m,n € N*, with m < n, any open set that contains m
has to also contain n. Hence, there are no disjoint open neighborhoods of m,n. |

Problem 2 Let (X,7) be a topological space. Prove that (), X are closed sets, that a finite
union of closed sets is a closed set, and that an arbitrary intersection of closed sets is a
closed set.

Solution:

We have C()) = X and C(X) = 0 and, since both X and ) are open, we have that ()
and X are both closed as complements of open sets.

Now given F1,..., F), closed, we have that

C(FLU...UF,) =C(F)N...NC(F,),

which is a finite intersection of open sets and is, therefore, open. Thus Fy U... U F), is
closed.
Finally, given an arbitrary collection {F,}aer of closed sets, we get
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which is an arbitrary union of open sets and is, therefore, open. hence (1, c; F is closed.
|

Problem 3 Prove that in a discrete topological space, each subset is simultaneously open
and closed.

Solution:

Recall that in a discrete space every subset is open. Therefore every subset is open and,
at the same time, has an open complement. Therefore every subset is simultaneously open
and closed. [



Problem 4 A family {Aq}acr of subsets is said to be mutually disjoint if for each distinct
pair 3, of indices Az N A, = . Prove that for each subset A of a topological space (X, T),
the three sets Int(A), Bdry(A) and Int(C(A)) are mutually disjoint and that X = Int(A) U
Bdry(A) UInt(C(A)).

Solution:

Recall that = € Int(A) if there exists an open set O, such that z € O C A. Thus,
this open set contains  and does not intersect C(A), which shows that = ¢ C(A), whence
x ¢ Bdry(A). Conversely, if z € Bdry(A), then x € C(A), which shows that there does
not exist open set O containing x such that O C A. Hence x ¢ Int(A). This shows that
Int(A)NBdry(A) = (). The proofs of the other two mutual disjointness relations are similar.

Now suppose that ¢ Bdry(A). Hence x ¢ A or x ¢ C(A). If the first condition holds,
then there exists an open set O containing = and such that ONA = (). Thus x € O C C(A).
This shows that z € Int(C(A)). In the second case, one shows, similarly, that z € Int(A).

Hence X = Int(A) UBdry(A) UInt(C(A)). [

Problem 5 In the real line prove that the boundary of the open interval (a,b) and the
boundary of the closed interval |a,b] is {a,b}.

Solution:
We have that (a,b) = [a,b] and C((a,b)) = (—o00,a] U [b,c0) = (—o0, a] U [b,00). There-
fore Bdry((a, b)) = (a,b) N C((a,b)) = {a,b}. One handles the closed interval similarly.

Problem 6 Let A be a subset of a topological space. Prove that Bdry(A) = 0 if and only
if A is open and closed.

Solution:
Suppose, first, that A is both open and closed. Then C(A) is also both open and closed.
Therefore A = A and C(A) = C(A). Therefore Bdry(A) = ANC(A) = ANC(A) = 0.

Suppose, conversely, that Bdry(A) = 0. Therefore A N C(A) = (). We show that both
A and C(A) are open. Suppose that a € A. Then a € A, whence, since AN W =0,
a ¢ C(A). Thus, there exists an open set O, such that a € O and O N C(A) = (. But then
a € O C A, whence A is a neighborhood of a. Since a was arbitrary, A is a neighborhood
of each of its points and is, therefore, open. A very similar argument, with the roles of A

and C(A) interchanged, shows that C(A) is also open. [ |

Problem 7 A subset A of a topological space (X,T) is said to be dense in X if A = X.
Prove that if for each open set O we have ANO # 0, then A is dense in X.

Solution:

We need to show that, if, for all open sets O, AN O # (), then A = X. To this aim, let
z € X and O open with z € O. But, by the hypothesis, O N A # (), whence, since O was
arbitrary, x € A. But x was also arbitrary, whence X C A. The reverse inclusion is obvious,
and, therefore, A = X and A is dense in X. |



Problem 8 Let a function f : X — Y be given. Prove that f : (X,2%) — (Y, T') is always
continuous, as is f : (X, T) — (Y,{0,Y}), where T' is any topology on'Y and T is any
topology on X.

Solution:

We show first, that, for an arbitrary topology 7’ on Y, the function f : (X,2%) — (Y, 77)
is continuous. Suppose O € 7’. Then f~1(0) C X, whence f~1(0) € 2% and, therefore,
f~Y1(O) is open in (X,2%X). This proves that f is continuous.

Now let 7 be an arbitrary topology on X and consider f : (X,7) — (Y, {0,Y}). Let
O be open in (Y,{0,Y}). Then O = ) or O =Y. therefore f~1(0) =0 or f~1(0) = X. In
either case f~1(O) € T, whence f~1(O) is open in X and f is continuous. [ |



