
HOMEWORK 3: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 Let (X, T ) be a topological space that is metrizable. Prove that for each pair
a, b of distinct points of X, there are open sets Oa and Ob containing a and b respectively,
such that Oa ∩ Ob = ∅. Prove that the topological space of Example 7 on page 72 is not
metrizable.

Solution: Let 〈X, d〉 be the metric space whose open sets form the collection T . Con-
sider a, b ∈ X. The two open balls Oa = B(a; d(a,b)

2 ) and Ob = B(b; d(a,b)
2 ) are in T and

a ∈ Oa, b ∈ Ob, with Aa ∩Ob = ∅.
The space is 〈N∗, T 〉 where T = {∅, O1, O2, . . .}, with On = {n, n + 1, . . .}, n ≥ 1. It is

clearly not metrizable since given m,n ∈ N∗, with m < n, any open set that contains m
has to also contain n. Hence, there are no disjoint open neighborhoods of m,n. ¥

Problem 2 Let (X, T ) be a topological space. Prove that ∅, X are closed sets, that a finite
union of closed sets is a closed set, and that an arbitrary intersection of closed sets is a
closed set.

Solution:
We have C(∅) = X and C(X) = ∅ and, since both X and ∅ are open, we have that ∅

and X are both closed as complements of open sets.
Now given F1, . . . , Fn closed, we have that

C(F1 ∪ . . . ∪ Fn) = C(F1) ∩ . . . ∩ C(Fn),

which is a finite intersection of open sets and is, therefore, open. Thus F1 ∪ . . . ∪ Fn is
closed.

Finally, given an arbitrary collection {Fα}α∈I of closed sets, we get

C(
⋂

α∈I

Fα) =
⋃

α∈I

C(Fα)

which is an arbitrary union of open sets and is, therefore, open. hence
⋂

α∈I Fα is closed.
¥

Problem 3 Prove that in a discrete topological space, each subset is simultaneously open
and closed.

Solution:
Recall that in a discrete space every subset is open. Therefore every subset is open and,

at the same time, has an open complement. Therefore every subset is simultaneously open
and closed. ¥
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Problem 4 A family {Aα}α∈I of subsets is said to be mutually disjoint if for each distinct
pair β, γ of indices Aβ ∩Aγ = ∅. Prove that for each subset A of a topological space (X, T ),
the three sets Int(A),Bdry(A) and Int(C(A)) are mutually disjoint and that X = Int(A) ∪
Bdry(A) ∪ Int(C(A)).

Solution:
Recall that x ∈ Int(A) if there exists an open set O, such that x ∈ O ⊆ A. Thus,

this open set contains x and does not intersect C(A), which shows that x 6∈ C(A), whence
x 6∈ Bdry(A). Conversely, if x ∈ Bdry(A), then x ∈ C(A), which shows that there does
not exist open set O containing x such that O ⊆ A. Hence x 6∈ Int(A). This shows that
Int(A)∩Bdry(A) = ∅. The proofs of the other two mutual disjointness relations are similar.

Now suppose that x 6∈ Bdry(A). Hence x 6∈ A or x 6∈ C(A). If the first condition holds,
then there exists an open set O containing x and such that O∩A = ∅. Thus x ∈ O ⊆ C(A).
This shows that x ∈ Int(C(A)). In the second case, one shows, similarly, that x ∈ Int(A).
Hence X = Int(A) ∪ Bdry(A) ∪ Int(C(A)). ¥

Problem 5 In the real line prove that the boundary of the open interval (a, b) and the
boundary of the closed interval [a, b] is {a, b}.

Solution:
We have that (a, b) = [a, b] and C((a, b)) = (−∞, a] ∪ [b,∞) = (−∞, a] ∪ [b,∞). There-

fore Bdry((a, b)) = (a, b) ∩ C((a, b)) = {a, b}. One handles the closed interval similarly.
¥

Problem 6 Let A be a subset of a topological space. Prove that Bdry(A) = ∅ if and only
if A is open and closed.

Solution:
Suppose, first, that A is both open and closed. Then C(A) is also both open and closed.

Therefore A = A and C(A) = C(A). Therefore Bdry(A) = A ∩ C(A) = A ∩ C(A) = ∅.
Suppose, conversely, that Bdry(A) = ∅. Therefore A ∩ C(A) = ∅. We show that both

A and C(A) are open. Suppose that a ∈ A. Then a ∈ A, whence, since A ∩ C(A) = ∅,
a 6∈ C(A). Thus, there exists an open set O, such that a ∈ O and O ∩ C(A) = ∅. But then
a ∈ O ⊆ A, whence A is a neighborhood of a. Since a was arbitrary, A is a neighborhood
of each of its points and is, therefore, open. A very similar argument, with the roles of A
and C(A) interchanged, shows that C(A) is also open. ¥

Problem 7 A subset A of a topological space (X, T ) is said to be dense in X if Ā = X.
Prove that if for each open set O we have A ∩O 6= ∅, then A is dense in X.

Solution:
We need to show that, if, for all open sets O, A ∩O 6= ∅, then A = X. To this aim, let

x ∈ X and O open with x ∈ O. But, by the hypothesis, O ∩ A 6= ∅, whence, since O was
arbitrary, x ∈ A. But x was also arbitrary, whence X ⊆ A. The reverse inclusion is obvious,
and, therefore, A = X and A is dense in X. ¥
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Problem 8 Let a function f : X → Y be given. Prove that f : (X, 2X) → (Y, T ′) is always
continuous, as is f : (X, T ) → (Y, {∅, Y }), where T ′ is any topology on Y and T is any
topology on X.

Solution:
We show first, that, for an arbitrary topology T ′ on Y , the function f : (X, 2X) → (Y, T ′)

is continuous. Suppose O ∈ T ′. Then f−1(O) ⊆ X, whence f−1(O) ∈ 2X and, therefore,
f−1(O) is open in (X, 2X). This proves that f is continuous.

Now let T be an arbitrary topology on X and consider f : (X, T ) → (Y, {∅, Y }). Let
O be open in (Y, {∅, Y }). Then O = ∅ or O = Y. therefore f−1(O) = ∅ or f−1(O) = X. In
either case f−1(O) ∈ T , whence f−1(O) is open in X and f is continuous. ¥
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