HOMEWORK 4: SOLUTIONS - MATH 490 INSTRUCTOR: George Voutsadakis

Problem 1 Prove that a function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is a homeomorphism if and only if

- 1. f is one-one;
- 2. f is onto;
- 3. For each point $x \in X$ and each subset N of X, N is a neighborhood of x if and only if f(N) is a neighborhood of f(x).

Solution:

The only if direction is easy. For the if direction we need to show that both $f: X \to Y$ and $f^{-1}: Y \to X$ are continuous. Suppose $O \subseteq Y$ is open. Then, if $O = \emptyset$, $f^{-1}(O) = \emptyset$ is open. If $O \neq \emptyset$, then, let $x \in O$. O is then a neighborhood of x. Hence $f^{-1}(O)$ is a neighborhood of $f^{-1}(x)$, since $O = f(f^{-1}(O))$ and $x = f(f^{-1}(x))$. Since $x \in O$ is arbitrary, $f^{-1}(O)$ is a neighborhood of each of its points and therefore open. Thus f is continuous. A similar argument applies to show that $f^{-1}: Y \to X$ is also continuous. Hence f is a homeomorphism.

Problem 2 Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a homeomorphism. Let a third topological space (Z, \mathcal{T}'') and a function $h : (Y, \mathcal{T}') \to (Z, \mathcal{T}'')$ be given. Prove that h is continuous if and only if hf is continuous. Let another function $k : (Z, \mathcal{T}'') \to (X, \mathcal{T})$ be given. Prove that k is continuous if and only if fk is continuous.

Solution:

If $h: Y \to Z$ is continuous, then hf is continuous, since the composite of two continuous functions is continuous. If, conversely, hf is continuous, then $h = (hf)f^{-1}$ is also continuous for the same reason.

The second assertion may be proved similarly.

Problem 3 If Y is a subspace of X and Z is a subspace of Y, then Z is a subspace of X.

Solution:

Let O be open in Z. Then, there exists an open P in Y, such that $O = P \cap Z$. Finally, there exists an open Q in X, such that $P = Q \cap Y$. But then $O = P \cap Z = (Q \cap Y) \cap Z = Q \cap (Y \cap Z) = Q \cap Z$. Thus O is the intersection of an open in X with Z.

Conversely, suppose that $O = Q \cap Z$ for an open set Q in X. Then $Q \cap Y$ is open in Y and $O = (Q \cap Y) \cap Z$, whence O is relatively open in Z.

Problem 4

1. Let O be an open subset of a topological space X. Prove that a subset A of O is relatively open in O if and only if it is an open subset of X.

2. Let F be a closed subset of a topological space X. Prove that a subset A of F is relatively closed in F if and only if it is a closed subset of X.

Solution:

Let A be relatively open in O. This is the case if and only if, there exists an open A' in X, such that $A' \cap O = A$. Thus A is open in X. Conversely, if $A \subset O$ is open in X, then $A \cap O = A$ is relatively open in O.

The second part may be proved similarly.

Problem 5 Let Y be a subspace of X and let A be a subset of Y. Denote by $Int_X(A)$ the interior of A in the topological space X and by $Int_Y(A)$ the interior of A in the topological space Y. Prove that $Int_X(A) \subset Int_Y(A)$. Illustrate by an example the fact that in general $Int_X(A) \neq Int_Y(A)$.

Solution:

If $x \in \text{Int}_X(A)$, then, there exists O open in X, such that $x \in O \subset A$. Thus $O \cap Y$ is open in Y, such that $x \in O \cap Y \subset A \cap Y = A$. Thus $x \in \text{Int}_Y(A)$.

Note that $\operatorname{Int}_{\mathbb{R}}([0,1]) = (0,1)$, whereas $\operatorname{Int}_{[0,1]}([0,1]) = [0,1]$.

Problem 6 Let $X = \prod_{\alpha \in I} X_{\alpha}$ be the topological product of the family of spaces $\{X_{\alpha}\}_{\alpha \in I}$. Prove that a function $f: Y \to X$ from a space Y into the product X is continuous if and only if for each $\alpha \in I$ the function $f_{\alpha} = p_{\alpha}f: Y \to X_{\alpha}$ is continuous.

Solution:

(This solution is taken from *Topology*, Second Edition, James R. Munkres, Prentice Hall). Each of the projections $p_{\alpha}, \alpha \in I$, is continuous, for, if U_{α} is open in X_{α} , then $p_{\alpha}^{-1}(U_{\alpha})$ is a subbasic element of the product topology. Hence, if $f: Y \to X$ is continuous, $f_{\alpha} = p_{\alpha}f$ is continuous as the composite of two continuous functions, for all $\alpha \in I$.

Conversely, assume that each of the f_{α} 's is continuous. To prove that f is continuous, it suffices to show that the inverse image under f of each subbasis element is open in Y. A typical subbasis element for the product topology is of the form $p_{\alpha}^{-1}(U_{\alpha})$, where $\alpha \in I$ and U_{α} is open in X_{α} . Now $f^{-1}(p_{\alpha}^{-1}(U_{\alpha})) = f_{\alpha}^{-1}(U_{\alpha})$, since $f_{\alpha} = p_{\alpha}f$. Since f_{α} is assumed continuous, this set is open in Y.

Problem 7 Let $\{X_{\alpha}\}_{\alpha \in I}$ and $\{Y_{\alpha}\}_{\alpha \in I}$ be two families of spaces indexed by the same indexing set I. For each $\alpha \in I$, let $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a continuous function. Define $f : \prod_{\alpha \in I} X_{\alpha} \to \prod_{\alpha \in I} Y_{\alpha}$ by $(f(x))(\alpha) = f_{\alpha}(x(\alpha))$. Prove that f is continuous.

Solution:

Let $p_{\alpha} : X \to X_{\alpha}, \alpha \in I$, and $q_{\alpha} : Y \to Y_{\alpha}, \alpha \in I$, be the projection maps. Since $p_{\alpha} : X \to X_{\alpha}$ is continuous for all $\alpha \in I$, the map $f_{\alpha}p_{\alpha} : X \to Y_{\alpha}$ is continuous, for all $\alpha \in I$. But $f_{\alpha}p_{\alpha} = q_{\alpha}f$, for all $\alpha \in I$, whence $q_{\alpha}f : X \to Y_{\alpha}$ is continuous, for all $\alpha \in I$. Thus, again by the previous problem, the map $f : X \to Y$ is also continuous.

Problem 8 Let n be an integer. Let $\phi_n : \mathbb{R} \to \mathbb{R}$ be the function from the real line into itself defined by $\phi_n(x) = nx$. Let $p(t) = (\cos(2\pi t), \sin(2\pi t))$ as before. Show that ϕ_n induces a function $\Phi_n : S \to S$ of the circle into itself so that $\Phi_n p = p\phi_n$.

Solution:

Define $\Phi_n : S \to S$, by $\Phi_n(\cos\phi, \sin\phi) = (\cos n\phi, \sin n\phi)$, for all $\phi \in [0, 2\pi)$. We then have

$$\Phi_n(p(t)) = \Phi_n(\cos(2\pi t), \sin(2\pi t))$$

= $(\cos(2\pi nt), \sin(2\pi nt))$
= $p(nt)$
= $p(\phi_n(t)).$