
HOMEWORK 5: SOLUTIONS - MATH 490
INSTRUCTOR: George Voutsadakis

Problem 1 On the real line, prove that the set of non-zero numbers is not a connected set.

Solution:
The space (−∞, 0) ∪ (0,∞) is disconnected, since −∞, 0) and (0,∞) are nonempty

disjoint relatively open in (−∞, 0) ∪ (0,∞) and their union is the whole space. ¥

Problem 2 Let A and B be subsets of a topological space X. if A is connected, B is open
and closed, and A ∩ B 6= ∅, prove that A ⊂ B. (Hint: Assume A 6⊂ B and use the sets
P = A ∩B and Q = A ∩ C(B) to prove that A is not connected.)

Solution:
Suppose A 6⊂ B. Consider P = A ∩ B and Q = A ∩ C(B). Then, by the hypothesis,

P 6= ∅ and, by our assumption, Q 6= ∅. B being both open and closed in X yields that both
P and Q are relatively open in A and, obviously, P ∪ Q = A,P ∩ Q = ∅. Therefore A is
disconnected, a contradiction. Hence A ⊂ B. ¥

Problem 3 Let f : IR → IR be continuous. Prove that the image under f of each interval
is either a single point or an interval.

Solution:
Each interval I is connected. Therefore, since f is continuous, f(I) is also connected.

Hence, since f(I) 6= ∅, f(I) is either a single point or an interval. ¥

Problem 4 Prove that a homeomorphism f : [a, b] → [a, b] carries end points into end
points.

Solution:
Suppose that f(a) = c, with a < c < b. Then, there exists some ε > 0, such that

(c − ε, c + ε) ⊂ [a, b]. Thus, since f is a homeomorphism, there exists δ > 0 and η > 0,
such that f((a, a + δ)) ⊂ (c − ε, c) and f((a, a + η)) ⊂ (c, c + ε). But then, for all x ∈
(a, a + min (δ, η)), we have c < f(x) < c a contradiction. ¥

Problem 5 Prove that a polynomial of odd degree considered as a function from the reals
to the reals has at least one real root.

Solution:
Let f(x) be a polynomial of odd degree. Then limx→−∞ f(x) = −∞ and limx→∞ f(x) =

∞ (or limx→−∞ f(x) = ∞ and limx→∞ f(x) = −∞, depending on whether the leading
coefficient is positive or negative, respectively). Hence, there exist a, b ∈ IR, such that
f(a) < 0 and f(b) > 0. Now the Intermediate Value Theorem applies to give an x ∈ (a, b),
such that f(x) = 0. ¥
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Problem 6 Let f : [a, b] → IR be a continuous function from a closed interval into the
reals. Let U = f(u) and V = f(v) be such that U ≤ f(x) ≤ V for all x ∈ [a, b]. Prove that
there is a w between u and v such that f(w) · (b− a) =

∫ b
a f(t)dt.

Solution:
Since U ≤ f(t) ≤ V, for all t ∈ [a, b], we have that

∫ b
a Udt ≤ ∫ b

a f(t)dt ≤ ∫ b
a V dt, i.e., that

U(b−a) ≤ ∫ b
a f(t)dt ≤ V (b−a). Therefore U ≤

R b
a f(t)dt

b−a ≤ V. Thus, by the intermediate value

theorem, there exists w ∈ [u, v], such that f(w) =
R b

a f(t)dt

b−a , i.e., f(w)(b− a) =
∫ b
a f(t)dt. ¥

Problem 7 Prove that a nonempty connected subset of a topological space that is both open
and closed is a component.

Solution:
Suppose that X is both open and closed but that it is not a component. Since X is

connected, it is properly contained in a connected component D. But then P = X ∩D and
Q = C(X) ∩D are two nonempty open disjoint subsets of D with P ∪ Q = D. Thus D is
disconnected, a contradiction. ¥

Problem 8 Let X be a topological space that has a finite number of components. Prove
that each component of X is both open and closed.

Solution:
We know that each connected component is closed. But in case the connected com-

ponents are finitely many, each connected component is the complement of the union of
finitely many closed sets, which is closed. Therefore, it is also open. ¥
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