HOMEWORK 5 - MATH 112 DUE DATE: Monday, March 8 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. Find the price per unit p that produces the maximum profit P given the cost function C = 100 + 30x and the demand function p = 90 x.
- 2. Use the cost function $C = 2x^2 + 5x + 18$ to find the production level for which the average cost is a minimum. For this production level, show that the marginal cost and average cost are equal.
- 3. Find the following limits
 - (a) $\lim_{x \to -2^{-}} \frac{1}{(x+2)^2}$
 - (b) $\lim_{x\to 3^+} \frac{x-4}{x-3}$
 - (c) $\lim_{x\to 0^-} (1+\frac{1}{x})$
 - (d) $\lim_{x\to-\infty}\frac{5x^2}{x+3}$
 - (e) $\lim_{x \to +\infty} (2x x^{-2})$
 - (f) $\lim_{x \to -\infty} \left(\frac{2x}{x-1} + \frac{3x}{x+1} \right)$
- 4. Find the domains, the intercepts, the extrema and the asymptotes and then sketch the graphs of the following functions.
 - (a) $f(x) = \frac{2+x}{1-x}$
 - (b) $f(x) = \frac{x^2}{x^2 16}$
 - (c) $f(x) = \frac{1}{x^2 x 2}$
 - (d) $f(x) = \frac{x^2 x 2}{x 2}$
- 5. Do a detailed study (domain, intercepts, asymptotes, monotonicity, concavity) and graph the following functions
 - (a) $f(x) = x^3 4x^2 + 6$
 - (b) $f(x) = x^4 4x^3 + 16x$
 - (c) $f(x) = \frac{2x}{x^2 1}$
- 6. Solve the following equations for x
 - (a) $(\frac{1}{3})^{x-1} = 27$ (b) $(\frac{1}{5})^{2x} = 625$ (c) $x^{\frac{3}{4}} = 8$
 - (d) $(x+3)^{\frac{4}{3}} = 16$

- 7. Sketch the graphs of the following functions using the values at the points x = -1, 0, 1 and your knowledge of the "shape" of exponentials.
 - (a) $f(x) = 6^x$
 - (b) $f(x) = 3^{-|x|}$
 - (c) $f(x) = 2^{-x} + 3$
- 8. Find the future value of an \$8000 investment if the interest rate is 4.5% compounded monthly for 2 years.