HOMEWORK 5 - MATH 151 DUE DATE: Monday, March 8 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. An aircraft is climbing at a 30^o angle to the horizontal. How fast is the aircraft gaining altitude if its speed is 500 mi/hr?
- 2. (a) Confirm that the stated formula is the local approximation at $x_0 = 0$

i.
$$(1+x)^{15} \approx 1+15x$$

ii. $\frac{1}{\sqrt{1-x}} \approx 1 + \frac{1}{2}x$

(b) Confirm that the stated formula is the local linear approximation of f at $x_0 = 1$, where $\Delta x = x - 1$

i.
$$f(x) = x^4, (1 + \Delta x)^4 \approx 1 + 4\Delta x$$

ii. $f(x) = \frac{1}{2+x}, \frac{1}{3+\Delta x} \approx \frac{1}{3} - \frac{1}{9}\Delta x$

- 3. Use an appropriate local linear approximation to estimate the value of the given quantity
 - (a) $\sqrt{65}$
 - (b) $\sin 0.1$
- 4. The electrical resistance R of a certain wire is given by $R = \frac{k}{r^2}$, where k is a constant and r is the radius of the wire. Assuming that the radius r has a possible error of $\pm 5\%$, use differentials to estimate the percentage error in R. (Assume that k is exact.)
- 5. (a) Use the horizontal line test to determine whether f is one-to-one:
 - i. f(x) = |x|ii. $f(x) = x^3$ iii. $f(x) = \sqrt{x-1}$.
 - (b) Determine whether f is one-to-one by examining the sign of the first derivative:
 - i. $f(x) = x^2 + 8x + 1$ ii. $f(x) = 2x + \sin x$ iii. $f(x) = \frac{x}{x+1}$.
- 6. (a) Find a formula for $f^{-1}(x)$.
 - i. f(x) = 7x 6ii. $f(x) = \sqrt[3]{2x - 1}$ iii. $f(x) = \frac{x+1}{x-1}$

(b) Find a formula for $f^{-1}(x)$ and state the domain of f^{-1}

i.
$$f(x) = (x+2)^4, x \ge 0$$
,
ii. $f(x) = \sqrt{x+3}$
iii. $f(x) = 3x^2 + 5x - 2, x \ge 0$.

7. (a) Find the exact values of the logarithms without using a calculator:

 $\log_2 16, \log_9 3, \log_{10} 0.00001, \ln^{-2003}\sqrt{e}.$

(b) Expand or write as a single logarithm as appropriate:

i. $\log \frac{\sqrt[3]{x+2}}{\cos 5x}$ ii. $\ln \sqrt{\frac{x^2+1}{x^3+5}}$ iii. $4\log 2 - \log 3 + \log 16$ iv. $\frac{1}{2}\ln(x+1) - 3\ln(\sin 2x) + 2$

- 8. (a) Solve the following equations:
 - i. $\log_{10} x^2 + \log_{10} x = 30$ ii. $\ln 4x - 3 \ln (x^2) = \ln 2$ iii. $3e^{-2x} = 5$ iv. $e^x - 2xe^x = 0$ v. $e^{-2x} - 3e^{-x} = -2$
 - (b) Graph the following functions by using the three "critical" points and your knowledge of the graphs of exponentials and logarithms:
 - i. $f(x) = 3 + e^{x-2}$ ii. $f(x) = (\frac{1}{2})^{x-1} - 1$ iii. $f(x) = 3 \ln \sqrt[3]{x-1}$