HOMEWORK 9 - MATH 151

DUE DATE: Monday, April 19

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Evaluate the following integrals:
 - (a) $\int \frac{\sin 3\theta}{1 + \cos 3\theta} d\theta$
 - (b) $\int \frac{e^x}{1+e^x} dx$
 - (c) $\int \frac{dx}{x\sqrt{1-(\ln x)^2}}$
 - (d) $\int \frac{x}{\sqrt{4-5x^2}} dx$
 - (e) $\int x \cos(3x^2) dx$
 - (f) $\int e^{\sin x} \cos x dx$
 - (g) $\int x^3 e^{x^4} dx$
 - (h) $\int \frac{dy}{\sqrt{y}e^{\sqrt{y}}}$
- 2. Solve the initial value problems
 - (a) $\frac{dy}{dx} = 6 5\sin 2x$; y(0) = 3
 - (b) $\frac{dy}{dt} = \frac{1}{100+4t^2}$; $y(-5) = \frac{3\pi}{80}$
- 3. Use Definition 6.4.3 with x_k^* as the right endpoint of each subinterval to find the area under the curve y = f(x) over the interval [a, b]:
 - (a) $y = 4 \frac{1}{4}x^2$; a = 0, b = 3
 - (b) $y = 1 x^3$; a = -3, b = -1
- 4. Use Theorem 6.5.4 and/or appropriate formulas from geometry to evaluate the integrals:
 - (a) $\int_0^3 (1 \frac{1}{2}x) dx$
 - (b) $\int_0^\pi \cos x dx$
 - (c) $\int_0^2 \sqrt{4-x^2} dx$
 - (d) $\int -3^0(2+\sqrt{9-x^2})dx$
 - (e) $\int_{-2}^{2} (1-3|x|)dx$
- 5. Evaluate the following integrals using the Fundamental Theorem of Calculus:

1

(a) $\int_{-1}^{2} x(1+x^3)dx$

- (b) $\int_{1}^{2} \frac{1}{x^{6}} dx$
- (c) $\int_0^1 (x \sec x \tan x) dx$
- (d) $\int_{-1}^{1} \frac{dx}{1+x^2}$
- (e) $\int_{\pi/6}^{\pi/2} (x + \frac{2}{\sin^2 x}) dx$
- 6. Evaluate the integrals
 - (a) $\int_{-1}^{2} \sqrt{2 + |x|} dx$
 - (b) $\int_0^{\pi/2} |\frac{1}{2} \sin x| dx$
- 7. Use substitution to evaluate the integrals:
 - (a) $\int_1^2 (4x-2)^3 dx$
 - (b) $\int_{-5}^{0} x \sqrt{4-x} dx$
 - (c) $\int_0^{\pi/6} 2\cos 3x dx$
 - (d) $\int_0^{\ln 5} e^x (3 4e^x) dx$
 - (e) $\int_{\ln 2}^{\ln (2/\sqrt{3})} \frac{e^{-x} dx}{\sqrt{1 e^{-2x}}}$
- 8. (a) Find the area under the curve $y = 3\cos 2x$ over the interval $[0, \pi/8]$.
 - (b) Find the area under the curve $y = \frac{1}{(3x+1)^2}$ over the interval [0,1].
 - (c) Find the average value of $f(x) = e^{-2x}$ over the interval [0,4].
 - (d) Find the average value of $f(x) = \frac{e^{3x}}{1 + e^{6x}}$ over the interval $[-\frac{\ln 3}{6}, 0]$.