PRACTICE EXAM 3 - MATH 151

DUE DATE: Friday, March 19

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 3 points. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. Find a formula for $f^{-1}(x)$ and state the domain of f^{-1} if $f(x) = x 5x^2$, $x \ge 1$.
- 2. Find the domain of the function $f(x) = \log_{2004} \frac{x-1}{x^2-3x-4}$.
- 3. Compute the derivative $\frac{dy}{dx}$
 - (a) $y = e^{x \tan x}$
 - (b) $y = \ln(x \tan y)$
 - (c) $y = e^x \ln x$
 - (d) $y = x^2 (\sin^{-1} x)^3$
- 4. Find the equation of the tangent line to the graph of $y = (x^2 + 3)^{\ln x}$ at x = 1.
- 5. Find the limits
 - (a) $\lim_{x\to 0^+} \frac{1-\ln x}{e^{1/x}}$
 - (b) $\lim_{x\to+\infty} xe^{-x}$
 - (c) $\lim_{x\to 0} (e^x + x)^{1/x}$
- 6. Create the table of study for the function $f(x) = \ln(1+x^2)$ and then roughly sketch its graph.

1

These formulas are offered courtesy of $\mathrm{George}^{\circledR}$ for your perusal:

1.
$$(\sin^{-1} x)' = \frac{1}{\sqrt{1-x^2}}, -1 < x < 1$$

2.
$$(\cos^{-1} x)' = \frac{-1}{\sqrt{1-x^2}}, -1 < x < 1$$

3.
$$(\tan^{-1} x)' = \frac{1}{1+x^2}, -\infty < x < \infty$$

4.
$$(\sec^{-1} x)' = \frac{1}{|x|\sqrt{x^2-1}}, 1 < |x|$$