EXAM 3 - MATH 112

DATE: Friday, March 18

INSTRUCTÖR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 3 points. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. Determine the equation of the tangent line to the graph of $f(x) = (e^{2x} + 1)^3$ at the point x = 0.
- 2. Study the function $f(x)=x^2e^{-x}$. (Find intervals of monotonicity, relative extrema, intervals of concavity, inflection points, and roughly sketch the graph.) In your study, you may find the following numbers useful $e^{-2}\approx 0.14, f(2+\sqrt{2})\approx 0.385$ and $f(2-\sqrt{2})=0.2$.
- 3. You deposit P dollars in an account whose annual interest rate is r, compounded continuously. How long will it take for your balance to quintuple (become 5 times your deposit)? Recall that the future amount for continuous compounding is given by $A = Pe^{rt}$.
- 4. Find the second derivatives of the functions:

(a)
$$f(x) = \log_2(3x + 7)$$

(b)
$$f(x) = x \ln \sqrt{x} + 2x$$

5. Compute the following indefinite integrals:

(a)
$$\int (\sqrt[5]{x^3} + \frac{t^2+2}{t^2}) dx$$

(b)
$$\int x^2 (\sqrt{x} + \sqrt[5]{x^7}) dx$$

6. A ball is thrown upward with an initial velocity of 16 feet per second from an initial height of 32 feet. Derive the position function s(t) of the height s in terms of time t. Then find when the ball will hit the ground. Given is the acceleration due to gravity $\alpha = -32$ feet/second.

1