HOMEWORK 6 - MATH 112 DUE DATE: Monday, March 14 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Use the three-value tables to graph on the same system of coordinate axes the functions $f(x) = 3^x$ and $g(x) = \log_3 x$.
- 2. Use your knowledge of the basic graphs of logarithms and of graphing techniques to roughly sketch the graph of the function $f(x) = -\log_{1/4} (x-2)$.
- 3. Consider the function $f(x) = \ln \frac{3x(x+1)}{(2x+1)^3}$.
 - (a) Find the domain of f(x).
 - (b) Expand the formula as a sum, difference or multiple of logarithms.
- 4. Solve the equations
 - (a) $7 + 2e^{3x} = 13$
 - (b) $9 + 5 \ln x = 24$
- 5. Find the derivatives of the following functions:
 - (a) $f(x) = \ln [(1 x^2)^{3/2}]$ (b) $f(x) = \frac{\ln x}{x^2}$
 - (c) $f(x) = \ln \sqrt[3]{\frac{x-1}{x+1}}$
 - (d) $f(x) = \ln \frac{1+e^x}{1-e^x}$
- 6. Find $\frac{dy}{dx}$ if

(a)
$$x^2 - 3\ln y + y^2 = 10$$

(b)
$$4xy + \ln(x^2y) = 7$$

7. Find the equation of the tangent line to the graph of $f(x) = \frac{\ln x}{x}$ at the point $(e, \frac{1}{e})$.

- 8. Compute the derivatives of:
 - (a) $f(x) = \log_3 (x^3 + 4x)$ (b) $f(x) = 6^{5x^2}$ (c) $f(x) = x^3 \cdot 7^{4x}$ (d) $f(x) = \frac{\log_2 (x-1)}{x^2+1}$