TEST 7 - MATH 140

DATE: Friday, February 24

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. (a) Convert the logarithmic expression $\log_7 x = 13$ to an exponential. (1 point)
 - (b) Convert the exponential expression $3^x = 18$ to a logarithmic. (1 point)
 - (c) Find the exact value of $\log_{\sqrt{2}} 16$. (1 point)
 - (d) Solve the logarithmic equation $\log_3(x^2+1)=2$. (2 points)
- 2. (a) Use a small 3-value table to roughly sketch the graph of the function $f(x) = \log_4 x$. (1 point)
 - (b) Describe the transformations that may be performed to obtain from the graph of f the graph of the function $g(x) = 2\log_4(3-x)$. (2 points)
 - (c) Use the information in the previous two parts to sketch the graph of g. (2 points)
- 3. (a) Calculate the value of the expression $\log_2 6 \cdot \log_6 4.$ (1 point)
 - (b) Calculate the value of the expression $3^{\log_3 5 \log_3 4}$. (1 point)
 - (c) Find the domain of the function $f(x) = \log_{2006} \frac{x^2 2x 24}{x 1}$. (3 points)
- 4. (a) Convert to a sum-difference of logarithms the expression $\ln \frac{5x\sqrt{1-3x}}{(x-4)^3}$. (2 points)
 - (b) Convert into a single logarithm the expression $3\log_5(3x+1) 2\log_5(2x-1) \log_5 x$. (2 points)
 - (c) Change to base 2006 the logarithmic expression $\log_{2005}(x-7)$. (1 point)
- 5. Solve the following logarithmic equations:
 - (a) $\log_7 x + \log_7 (x 2) = \log_7 (x + 4)$ (2 points)
 - (b) $\log_2(3x+2) \log_4 x = 3$ (2 points)
 - (c) $\log_2(\log_2(\log_2 x)) = 1$ (1 point)