HOMEWORK 10 - MATH 102

DUE DATE: Thursday, April 26

INSTRUCTOR: George Voutsadakis

Read each problem **very carefully** before starting to solve it. Four out of the eight problems will be chosen at random and graded. Each problem graded is worth 3 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Solve the following equations:

(a)
$$\frac{x}{x+4} + \frac{x}{x-2} = -\frac{1}{2}$$

(b)
$$\frac{2x}{x-2} + \frac{x}{x-1} = \frac{7}{6}$$

2. Solve the following equations using substitution:

(a)
$$x^6 - 26x^3 - 27 = 0$$

(b)
$$y^{2/3} + 5y^{1/3} = -6$$

(c)
$$(x^2 + 3x) + 5\sqrt{x^2 + 3x} - 14 = 0$$

3. Solve the following inequalities and graph the solution set:

(a)
$$x^2 - 2x - 3 > 0$$

(b)
$$x^2 + 8x < -16$$

- 4. Solve the polynomial inequality $(x-2)(x-3)(x+4) \leq 0$ and graph the solution set.
- 5. Solve the following rational inequalities and graph the solution set:

(a)
$$\frac{x+5}{x-3} > 2$$

(b)
$$\frac{3}{x} + 1 < \frac{1}{x} - 2$$

- 6. Find the formulas of the functions $(f \circ g)(x), (g \circ f)(x)$ and $(f \circ f)(x)$ if $f(x) = x^2 + 3$ and g(x) = x 1. Simplify your answers.
- 7. Suppose that $f(x) = \frac{5x}{x+2}$ and $g(x) = \frac{x}{x+3}$. Find the domains of f, of g, of the sum f + g, of the product $f \cdot g$ and of the quotient $\frac{f}{g}$.

1

8. Find a formula for the inverse function $f^{-1}(x)$ if

(a)
$$f(x) = \sqrt{x^7 - 3}$$

(b)
$$f(x) = \frac{3x-2}{2x+5}$$