EXAM 4 - MATH 112

DATE: Friday, April 13

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 5 points. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Find the equation of the function f whose graph passes through the point (3,25) and whose derivative is $f'(x) = \frac{5x}{\sqrt{2x^2+7}}$. (5 points)
- 2. Compute the following integrals:
 - (a) $\int (5x 20)e^{3x^2 24x} dx$ (2.5 points)
 - (b) $\int \frac{x^2 8x}{3 + 12x^2 x^3} dx$ (2.5 points)
- 3. Evaluate the following definite integrals:

(a)
$$\int_{1}^{2} \frac{1}{e^{2x}-1} dx$$

(b) $\int_{1}^{2} \frac{(2+\ln x)^{3}}{x} dx$

- 4. Find the area of the region that is bounded by the graphs of $y = \sqrt[3]{x}$ and $y = \frac{1}{4}x$.
- 5. Approximate the area of the region under the graph of $f(x) = \frac{1}{x^2}$ from x = 1 to x = 3 by using the Midpoint Rule with n = 4. Then find the exact area of that region.
- 6. Find the volume of the solid of revolution formed by revolving the region (in the first quadrant) bounded by the graphs of the equations $y = \frac{1}{1+x^2}$, x = 0 and $y = \frac{1}{2}$ around the y-axis.