EXAM 3 - MATH 310 YOUR NAME:

Friday, November 7 George Voutsadakis

Read each problem **very carefully** before starting to solve it. Each problem is worth 10 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Show in detail that the functions $f(t) = \sin t$, $g(t) = \cos t$ and h(t) = t are linearly independent over \mathbb{R} .

2. Use the method of undetermined coefficients to solve the third-order linear differential equation $y''' - 4y' = t^2 + e^t$.

3. Use variation of parameters to find a general solution of the third-order differential equation $y''' - y'' + y' - y = e^{-t} \sin t, 0 \le t < 2\pi$. You may **leave your answer in integral form**.

4. Find **from scratch** the Laplace transform F(s) of the function $f(t) = e^{3t} \cosh 2t$.

5. Use the Laplace transform method to solve the initial value problem y'' - 10y' + 9y = 5t, with y(0) = -1 and y'(0) = 2.

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)}$	10. $e^{at} \cos bt$	$\frac{s-a}{(s-a)^2+b^2},$
1	$\frac{1}{s}$, $s > 0$	11. $t^n e^{at}$, $n = \text{positive integer}$	
e^{at}	$\frac{1}{s-a}, \qquad s > a$	11. $t^{n}e^{-t}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > \frac{1}{(s-a)^{n+1}}, \qquad s > \frac{1}{(s-a)^{n+1}},$
t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$
$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$
sin at	$\frac{a}{s^2 + a^2}, \qquad s > 0$	14. $e^{ct}f(t)$	F(s-c)
cos at	$\frac{s}{s^2 + a^2}, \qquad s > 0$	15. <i>f</i> (<i>ct</i>)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$
sinh at	$\frac{a}{s^2 - a^2}, \qquad s > a $	$16. \int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
cosh at	$\frac{s}{s^2 - a^2}, \qquad s > a $	17. $\delta(t-c)$	e^{-cs}
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	18. $(-t)^n f(t)$	$F^{(n)}(s)$