QUIZ 9 - MATH 310 Your Name:

Read each problem **very carefully** before starting to solve it. Each problem is worth 5 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Graph and express the function $g(t) = \begin{cases} 0, & \text{if } 0 \le t < \pi \text{ or } t \ge 3\pi \\ 1, & \text{if } \pi \le t < 3\pi \end{cases}$ in terms of Heavyside functions.

2. Decompose the fraction $\frac{1}{s(s^2+4)}$ into partial fractions.

3. Find the inverse Laplace transforms of the following functions:

$$e^{-\pi s} \frac{1}{s} =$$

$$e^{-3\pi s} \frac{1}{s} =$$

$$e^{-\pi s} \frac{s}{s^2 + 4} =$$

$$e^{-3\pi s} \frac{s}{s^2 + 4} =$$

4. Use Laplace transforms to solve the initial value problem

$$y'' + 4y = g(t), \quad y(0) = 0, \ y'(0) = 0, \ g(t) = \begin{cases} 0, & \text{if } 0 \le t < \pi \text{ or } t \ge 3\pi \\ 1, & \text{if } \pi \le t < 3\pi \end{cases}$$

(Hint: Take advantage of Problems 1-3 in your solution!!)

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)}$
1. 1	$\frac{1}{s}$, $s > 0$
2. e^{at}	$\frac{1}{s-a}, \qquad s > a$
3. t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
4. t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s>0$
5. sin <i>at</i>	$\frac{a}{s^2 + a^2}, \qquad s > 0$
6. cos <i>at</i>	$\frac{s}{s^2+a^2}, \qquad s>0$
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $
8. cosh <i>at</i>	$\frac{s}{s^2 - a^2}, \qquad s > a $
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s > a$
10. $e^{at} \cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$
11. $t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s>a$
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$
13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$
14. $e^{ct}f(t)$	F(s-c)
15. <i>f</i> (<i>ct</i>)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$
$16. \int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
17. $\delta(t-c)$	e^{-cs}
18. $(-t)^n f(t)$	$F^{(n)}(s)$