EXAM 4 - MATH 305 YOUR NAME:

Friday, December 8 George Voutsadakis

Read each problem **very carefully** before starting to solve it. Each problem is worth 10 points. It is necessary to show **all** your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Find the eigenvalues and bases for the corresponding eigenspaces of the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.

2. Diagonalize the matrix $A = \begin{bmatrix} 1 & -2 \\ -7 & 6 \end{bmatrix}$, i.e., find an invertible matrix P and a diagonal matrix D, such that $P^{-1}AP = D$.

3. Find a matrix X, such that $X^3 = A$, where A is the matrix of Problem 2.

4. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T(\boldsymbol{x}) = A\boldsymbol{x}$, where $A = \begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix}$.

If
$$\mathcal{B} = \left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
, find $[T]_{\mathcal{B}} (= {}_{\mathcal{B}}[T]_{\mathcal{B}})$.

- 5. Consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, defined by $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 5 & -3 \\ -7 & 1 \end{bmatrix}$. Find the following:
 - (a) A basis \mathcal{B} of \mathbb{R}^2 , such that $[T]_{\mathcal{B}}$ is diagonal.
 - (b) $[T]_{\mathcal{B}}$ where \mathcal{B} is the basis you found in Part (a).