Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. (a) Solve the polynomial equation $x^{4}-2 x^{3}-35 x^{2}=0$.
(b) Find the domain of the function $f(x)=\sqrt{7-3 x}$ and write your answer in interval notation.
2. (a) Consider the function $f(x)=-x^{2}+6 x-8$.
(i) Find its vertex.
(ii) Find its opening direction.
(iii) Find its y-intercept.
(iv) Find its x-intercept(s).
(b) (This part is related to Part (a)) Consider the function

$$
h(x)= \begin{cases}-x+1, & \text { if } x<1 \\ -x^{2}+6 x-8, & \text { if } x \geq 1\end{cases}
$$

Use all information gathered in Part (a) to sketch the graph of $y=h(x)$, making sure to label all important points.
3. Consider the function $f(x)= \begin{cases}\frac{x+2}{x^{2}-x-6}, & \text { if } x<-2 \\ -\frac{1}{5}, & \text { if } x=-2 . \text { Find the following: } \\ \frac{x^{2}+5 x+6}{x^{2}+7 x+10}, & \text { if } x>-2\end{cases}$
(a) $f(-2)=$
(b) $\lim _{x \rightarrow-2^{-}} f(x)=$
(c) $\lim _{x \rightarrow-2^{+}} f(x)=$
(d) $\lim _{x \rightarrow-2} f(x)=$
(e) Circle those properties that apply: At $x=-2$ the function $y=f(x)$ is: left continuous right continuous continuous none of these
4. Find the slope of the tangent line to the graph of $f(x)=\sqrt{x+2}$ at $x=-1$.
5. A car is approaching a " 4 -WAY STOP" intersection and, as its driver decelerates, its velocity is given as a function of time by $f(t)=\frac{20}{t+1} \mathrm{mph}$, where t is time in seconds.
(a) What is the velocity of the vehicle at $t=0$ seconds (beginning of observations)?
(b) What is the velocity of the vehicle at $t=3$ seconds?
(c) Find the average rate of change of the vehicle's velocity from $t=0$ to $t=3$ seconds (specify the units, if you can).
(d) Find the instantaneous rate of change of the vehicle's velocity at exactly $t=3$ seconds.

