EXAM 2 - MATH 112 YOUR NAME: \qquad

Read each problem very carefully before starting to solve it. Each problem is worth 10 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Compute the following derivatives:
(a) $\left[6 \sqrt[3]{x^{2}}-\frac{9}{\sqrt[3]{x}}\right]^{\prime}=$
(b) $\left[x^{3}(2 x-3)^{5}\right]^{\prime}=$
(c) $\left[\frac{x+1}{3 x^{2}-7 x}\right]^{\prime}=$
2. Find an equation for the tangent line to $f(x)=x^{2}\left(2 x^{3}+x+5\right)^{3}$ at $x=-1$.
3. Suppose that an object moving on a straight line is located at $s(t)=\frac{5 t+2}{t-1}$ meters from the origin at time $t>1$ in seconds.
(a) Find the velocity of the object at $t=2$ seconds.
(b) Find its acceleration at time $t=3$ seconds.
4. Consider the function $f(x)=\frac{x}{x^{2}-9}$.
(a) Find the domain of f.
(b) Find the vertical and horizontal asymptotes of f.

Vertical Asymptotes (Lines):
Horizontal Asymptotes (Lines):
(c) Find the first derivative and its critical points.
(d) Create a sign table for the first derivative and draw conclusions about the monotonicity (intervals where it is increasing/decreasing) and the relative extrema (max/min) of f.
5. Consider the function $f(x)=-x^{4}+4 x^{3}$.
(a) Find the first derivative and its critical points.
(b) Find the second derivative and its critical points.
(c) Create the combined sign table for the first and the second derivatives, making sure to give a summary of the monotonicity, relative extrema, concavity and inflection points of f at the last line of the table.
(d) Roughly sketch the graph of $y=f(x)$, clearly indicating (by labels) all important points.

