
EXAM 1 SOLUTIONS - MATH 300

INSTRUCTOR: George Voutsadakis

Problem 1 Use Boole’s method of equational reasoning to establish the validity of the following

argument:

A′(B′ ∪ C ′) = 0
CD′ = 0
DE = 0
∴ A′E = 0

Solution: We have the following

A′E = A′1E (Intersection with Universe)
= A′(B ∪B′)E (B ∪B′ = 1)
= A′BE ∪A′B′E (Distributivity)
= A′B1E (Hypothesis 1)
= A′B(C ∪ C ′)E (C ∪C ′ = 1)
= A′BCE ∪A′BC ′E (Distributivity)
= A′BC1E (Hypothesis 1)
= A′BC(D ∪D′)E (D ∪D′ = 1)
= A′BCDE ∪A′BCD′E (Distributivity)
= 0 ∪ 0 (Hypotheses 3 and 2)
= 0 (0 ∪ 0 = 0)

�

Problem 2 Use Carroll’s tree method to show the validity of the following argument:

ABF = 0
ACD = 0
B′D′E′ = 0
C ′DE′ = 0
D′E′F ′ = 0
∴ AE′ = 0

Solution: The Carroll tree of Figure 1 justifies the validity of the given argument, with the red
numbers referring to the hypotheses that justify why the expressions labeling the leaves correspond
to the empty set. �

Problem 3 Determine whether the following argument is valid

P → Q

(Q ∨R) ∧ ¬(Q ∧R)
∴ ¬Q → (¬P ∧R)

Solution: Suppose that e is an assignment of truth values to the propositional variables that
evaluates P → Q and (Q ∨R) ∧ ¬(Q ∧R) to value true.

If e(Q) = 1, then ¬Q → (¬P ∧R) is evaluated to true and there is nothing to prove.

If, on the other hand, e(Q) = 0, then, since P → Q is evaluated to true, we must have e(P ) = 0.
Moreover, since (Q ∨ R) ∧ ¬(Q ∧R) is evaluated to true, we must also have e(R) = 1. But, then,
¬P ∧R is also evaluated to true, showing that ¬Q → (¬P ∧R) is evaluated to true.

The reasoning above shows that the given argument is a valid argument. �



Figure 1: Carroll’s Tree for Problem 2.

Problem 4 In this problem, we are going to use the following notation:

N “needs to sleep 12 hours”

L “is the life of a party”

S “is a skier”

J “likes junk food”

T “likes TV soap operas”

M “rides a motorcycle”.

Convert the statements in the following argument into propositional formulas and, then, determine

whether the argument is valid, if the universe of discourse is the set of all people:

Those who do not need 12 hours sleep are the life of a party.

Those who need 12 hours sleep are not skiers nor do they like junk food.

Anyone who is not a skier likes TV soap operas.

A person who is the life of a party does not like TV soap operas nor ride a motorcycle.

Skiers do not like junk food.

∴ Everyone likes TV soap operas and rides a motorcycle.

Solution: Using the notation suggested at the beginning of the problem, the given argument may
be recast in propositional logic as follows:

¬N → L

N → (¬S ∧ ¬J)
¬S → T

L → (¬T ∧ ¬M)
S → ¬J

∴ T ∧M

The displayed argument is not valid. Consider the truth assignment e, whose values on the propo-
sitional variables are summarized in the following table:

Variable N S L T M J

e-Assignment 0 1 1 0 0 0



Under this assignment, it is not difficult to see that all hypotheses in the argument above are
evaluated to truth value true, but the conclusion is evaluated to truth value false. Thus, the given
argument is not a valid argument. �

Problem 5 (An Application of Compactness)

König’s Infinity Lemma: If a tree contains infinitely many vertices, each having

finitely many children, then it has at least one infinite path.

Use carefully the Compactness Theorem to prove König’s Lemma.

(Hint: Introduce for every vertex v in the tree a propositional variable Pv. The intuition is that Pv

will be assigned the truth value 1 if and only if v is in the infinite path whose existence is asserted

in the conclusion of the statement.)

Solution: We introduce, as suggested in the Hint, for every vertex v in the tree a propositional
variable Pv. The intuition is that Pv will be assigned the truth value 1 if and only if v is in the
infinite path whose existence is asserted in the conclusion of the statement. We consider the infinite
collection S of propositional formulas that consists of the following types of formulas:

(a) Pv0 , where v0 is the root of the given tree;

(b) Pv1 ∨ Pv2 ∨ · · · ∨ Pvkn
, where v1, v2, . . . , vkn are all vertices of the tree at level n, i.e., those

that are connected to the root by a path of length n;

(c) Pv → ¬Pu, if, either u 6= v are at the same level in the tree, or u is one level higher than v

and (v, u) is not an edge of the tree, i.e., u is not a child of v.

The single formula of Type (a) says that the root must necessarily be a vertex on the infinite path.
Formulas of Type (b) say that at least one vertex at each level must be on the infinite path and
formulas of Type (c) say that no two different vertices at the same level must be on the path and,
moreover, no two vertices not joined by an edge can be successive vertices on the path.

We implement the following proof strategy:

• We first show that every finite subset S0 of S is satisfiable;

• By Compactness, we may now infer that S is satisfiable (this step does not require proof);

• We prove that the satisfiability of S implies the existence of an infinite path in the tree.

Every finite subset S0 of S is satisfiable: Let n be an integer large enough that all variables
appearing in the finite S0 refer to vertices at level at most n. Consider a vertex vn at that level n
and the unique path v0, v1, v2, . . . , vn joining the root v0 with vn. Define the assignment e of truth
values to the propositional variables appearing in S0 defined as follows:

e(Pv) = 1 iff v = vi, for some i = 0, 1, . . . , n.

Clearly, all axioms of Types (a)-(c) that are in S0 are satisfied by e, i.e., S0 is satisfiable. �

If S is satisfiable, then there exists an infinite path: Suppose e is a satisfying assignment
for the entire set S. We form the path v0, v1, v2, . . . where vi is, by the satisfiability of formulas of
Type (b) and (c), the unique vertex at level i for which e(Pvi

) = 1. The fact that e(Pv0) = 1, i.e.,
that the root is included, is ensured by Formula (a). The fact that the path is infinite is ensured
by the formulas of Type (b). Finally, the fact that vn+1 is a child of vn in the tree is ensured by
the formulas of Type (c). �

This concludes the proof of König’s Lemma, i.e., of the existence of an infinite path in a tree with
infinitely many vertices, each of which has finitely many children. �


