HOMEWORK 1 SOLUTIONS - MATH 300
INSTRUCTOR: George Voutsadakis

Problem 1 Is2 € {1,2,3}? Why?

Solution: The set {1,2,3} has as members the three natural numbers 1,2 and 3. Since 2 is one
of them, 2 € {1, 2, 3}. |

Problem 2 Is {1,2} € {{1,2,3},{1,3},1,2} ¢ Why?

Solution: Theset {{1,2,3},{1,3},1,2} consists of four elements: the natural numbers 1 and 2 and
the two sets {1,2,3} and {1,3}. Thus, the set {1,2} is not an element of the set {{1,2,3}, {1, 3},
1,2}, i.e., it is not true that {1,2} € {{1,2,3},{1,3},1,2}. [

Problem 3 Give precise descriptions in plain English of the following sets:
(a) {z € N : z is divisible by 2 and x is divisible by 3}
(b) {(z,y) e R?: 2 +y? =1}
(¢) {(z,y) e R?:y =27 and y = 3z}

Solution:

(a) Let us denote

A = {x €NN:«zis divisible by 2 and z is divisible by 3};
B = {z e€IN:zis divisible by 6}.
We show that A = B.

First, note that, if x € A, then, there exist m,n € IN, such that z = 2m and x = 3n. Thus
2m = 3n, which shows that m is divisible by 3, i.e., there exists k£ € IN, such that m = 3k.
Hence, x = 2m = 2 - 3k = 6k. Therefore z is in fact divisible by 6, i.e., x € B. This shows
ACB.

Conversely, if z € B, then, there exists n € IN, such that £ = 6n = 2 -3 -n and, therefore z is
divisible by both 2 and 3. Thus, x € A. This shows that B C A.

The two previous inclusions show that A = B.

(b) This is the set of all pairs of Cartesian coordinates of points on the plane that are on the unit
circle with center at the origin.

(c¢) Let us denote
A = {(x,y) €R?:y =22 and y = 3z};
B = {(0,0)}.

We show that A = B.

Clearly, if (z,y) € B, then x = y = 0, whence y = 2z and y = 3z and, therefore (z,y) € A.
Thus B C A.

Conversely, if (z,y) € A, then y = 2z and y = 3z, whence 2z = 3z, i.e., z = 0 and, hence
y =2z =0. Thus (z,y) = (0,0) € B. This shows that A C B.

The two inclusions, taken together, imply A = B.



Problem 4 Show formally the following statements:
(a) {k € Z:k==6m for somemecZ} C{keZ:k=2n for somen € Z};
(b) IfAS B and BC C, then A G C.

Solution:

(a) If k € {k € Z : k = 6m for some m € Z}, then, there exists m € Z, such that k = 6m =
2(3m), with 3m € Z. Thus k € {k € Z : k = 2n for some n € Z}. This proves the statement.

(b) We first show that A C C. Suppose that 2 € A. Since A & B, we get that z € B. Thus,
since B C C, we get « € C. This proves that A C C.

We finally show that A # C. Since A ; B, there exists x € B, such that x ¢ A. But, then,

since B C C, we get that z € C and z ¢ A. Therefore, A # C.
|

Problem 5 Is (each of) the following statement true for all sets A, B and C'? If it is, give a proof.
If it is not, provide a counterexample.

(a) If A# B and B # C, then A # C;

(b) If A€ B and BZ C, then A& C;

(c) IfAS B and BC C, then C € A;
Solution:

(a) This statement is not true for all sets A, B and C. As a counterexample, consider A = (), B =
{0} and C = (). Then, clearly, A # B and B # C, but A =C.

(b) This statement is not true for all sets A, B and C. As a counterexample, consider A = 0,
B ={0,0} and C = {0}. Then, clearly, A€ B and BZ C, but A € C.

(c) This statement is true for all sets A, B and C. Assume that A G B and B C C. Since A & B,
there exists x € B, with x € A. Since BC C, z € C and = ¢ A. Therefore C  A.

|
Problem 6 Show that, for a set A in a universe U, we have (A") = A.
Solution: For all x € U, we have
ze(A) iff g A
iff e A
Therefore (A’) and A contain exactly the same elements, i.e., (A’) = A. [ |

Problem 7 Show that, for any sets A, B in a universe U, we have (AU B)' = A'N B’.

Solution: If x € (AU B)’, then z ¢ AU B, whence = ¢ A and z ¢ B, showing that x € A" and
x € B',ie.,x € A N B'. This proves that (AUB) C A'n B'.

Conversely, if z € A’ N B’, then x € A’ and z € B’, whence x € A and x ¢ B, which gives that
x ¢ AU B, i.e., that z € (AU B)'. This shows that AN B’ C (AU B)'.

These two parts taken together yield that (AU B) = A’ N B'. |



Problem 8 FEither prove or give a counterexample for the following statement: For all sets A, B,C
in a universe U, (A\B)\C = A\(BU ().

Solution: Suppose that z € (A\B)\C. Then x € A\B and x ¢ C. Therefore z € A and z ¢ B
and x ¢ C. The first and last two statements give, respectively, x € A and x ¢ B U C. Thus, we
obtain z € A\(B U (). This proves that (A\B)\C C A\(BUC).

Suppose, conversely, that z € A\(BUC). Then z € A and z ¢ BUC. Therefore, x € A and
x & B and x ¢ C. The first two statements give x € A\B and the third z ¢ C. Therefore, we
obtain z € (A\B)\C. This proves that A\(BUC) C (A\B)\C.

The previous two statements taken together imply that (A\B)\C = A\(BUC). [

Problem 9 Consider the following three syllogisms:

(a) AllSis M (b) Some M is not P (c) All Mis P
No M is P No M is S Some S is M
. Some S is P . NoSisP . Some S is not P

For each of (a),(b) and (c) provide its mood, its figure and explain whether it is a valid syllogism
under the modern convention regarding the empty class.

Solution:

(a) The mood of this argument is EAI and it is of Figure 1. It is not a valid argument and the
interpretation S = M = P = () provides a counterexample.

(b) The mood of this argument is OEE and it is of Figure 3. It is not a valid argument and the
interpretation S = P = {0} and M = {1} provides a counterexample.

(¢) The mood of this argument is AIO and it is of Figure 1. It is not a valid argument and the

interpretation S = M = P = {0} provides a counterexample.
|

Problem 10 Consider the following arguments

ARGUMENT 1 ARGUMENT 2
(AuC’) =0 (AucCc'uD) =0
(A'CY(BC)Y =0 AD =0
. (BC'Y =0 BC' =0

s AB =0

(a) Use a Venn diagram to determine if each argument is correct.

(b) If the argument is correct, then use both Boole’s equational reasoning and Carroll’s tree method
to prove its correctness.

Solution:

ARG. 1 This is not a valid argument. The following Venn diagram of Figure 1 provides a counterex-

ample (i.e., take U = A= B = C = {0}):

ARG. 2 The given argument has the equivalent form:

ACD' =0
AD =0
BC"=0

.. AB=0



e

Figure 1: Venn Diagram for ARGUMENT 1

>

Figure 2: Venn Diagram for ARGUMENT 2

This is a valid argument as shown by the Venn diagram of Figure 2. The Boolean equational
reasoning that yields the conclusion from the premises is

AB = ABI1 (Intersection with Universe)
= AB(CuUC") (Union of C' and C")
= ABCUABC' (Distributivity)
= ABC1UABC' (Intersection with Universe)
= ABC(DUD')UABC' (Union of D and D’)
= ABCDUABCD'UABC’" (Distrubutivity)
= BCOUBOUAO (Premises)
= 0U0UO (Intersection with )
(

= 0 Union).

Finally, Carroll’s tree yielding the same conclusion is given in Figure 3
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Figure 3: Carroll’s Tree Diagram for ARGUMENT 2



