HOMEWORK 1 SOLUTIONS - MATH 300 INSTRUCTOR: George Voutsadakis

Problem 1 *Is* $2 \in \{1, 2, 3\}$ *? Why?*

Solution: The set $\{1, 2, 3\}$ has as members the three natural numbers 1, 2 and 3. Since 2 is one of them, $2 \in \{1, 2, 3\}$.

Problem 2 Is $\{1,2\} \in \{\{1,2,3\},\{1,3\},1,2\}$? Why?

Solution: The set $\{\{1, 2, 3\}, \{1, 3\}, 1, 2\}$ consists of four elements: the natural numbers 1 and 2 and the two sets $\{1, 2, 3\}$ and $\{1, 3\}$. Thus, the set $\{1, 2\}$ is **not** an element of the set $\{\{1, 2, 3\}, \{1, 3\}, 1, 2\}$, i.e., it is **not** true that $\{1, 2\} \in \{\{1, 2, 3\}, \{1, 3\}, 1, 2\}$.

Problem 3 Give precise descriptions in plain English of the following sets:

(a) $\{x \in \mathbb{N} : x \text{ is divisible by } 2 \text{ and } x \text{ is divisible by } 3\}$

(b)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

(c) $\{(x,y) \in \mathbb{R}^2 : y = 2x \text{ and } y = 3x\}$

Solution:

(a) Let us denote

 $A = \{x \in \mathbb{N} : x \text{ is divisible by } 2 \text{ and } x \text{ is divisible by } 3\};\$ $B = \{x \in \mathbb{N} : x \text{ is divisible by } 6\}.$

We show that A = B.

First, note that, if $x \in A$, then, there exist $m, n \in \mathbb{N}$, such that x = 2m and x = 3n. Thus 2m = 3n, which shows that m is divisible by 3, i.e., there exists $k \in \mathbb{N}$, such that m = 3k. Hence, $x = 2m = 2 \cdot 3k = 6k$. Therefore x is in fact divisible by 6, i.e., $x \in B$. This shows $A \subseteq B$.

Conversely, if $x \in B$, then, there exists $n \in \mathbb{N}$, such that $x = 6n = 2 \cdot 3 \cdot n$ and, therefore x is divisible by both 2 and 3. Thus, $x \in A$. This shows that $B \subseteq A$.

The two previous inclusions show that A = B.

- (b) This is the set of all pairs of Cartesian coordinates of points on the plane that are on the unit circle with center at the origin.
- (c) Let us denote

$$A = \{(x, y) \in \mathbb{R}^2 : y = 2x \text{ and } y = 3x\}; B = \{(0, 0)\}.$$

We show that A = B.

Clearly, if $(x, y) \in B$, then x = y = 0, whence y = 2x and y = 3x and, therefore $(x, y) \in A$. Thus $B \subseteq A$.

Conversely, if $(x, y) \in A$, then y = 2x and y = 3x, whence 2x = 3x, i.e., x = 0 and, hence y = 2x = 0. Thus $(x, y) = (0, 0) \in B$. This shows that $A \subseteq B$.

The two inclusions, taken together, imply A = B.

Problem 4 Show formally the following statements:

- (a) $\{k \in \mathbb{Z} : k = 6m \text{ for some } m \in \mathbb{Z}\} \subseteq \{k \in \mathbb{Z} : k = 2n \text{ for some } n \in \mathbb{Z}\};\$
- (b) If $A \subsetneqq B$ and $B \subseteq C$, then $A \subsetneqq C$.

Solution:

- (a) If $k \in \{k \in \mathbb{Z} : k = 6m \text{ for some } m \in \mathbb{Z}\}$, then, there exists $m \in \mathbb{Z}$, such that k = 6m = 2(3m), with $3m \in \mathbb{Z}$. Thus $k \in \{k \in \mathbb{Z} : k = 2n \text{ for some } n \in \mathbb{Z}\}$. This proves the statement.
- (b) We first show that $A \subseteq C$. Suppose that $x \in A$. Since $A \subsetneqq B$, we get that $x \in B$. Thus, since $B \subseteq C$, we get $x \in C$. This proves that $A \subseteq C$.

We finally show that $A \neq C$. Since $A \subsetneq B$, there exists $x \in B$, such that $x \notin A$. But, then, since $B \subseteq C$, we get that $x \in C$ and $x \notin A$. Therefore, $A \neq C$.

Problem 5 Is (each of) the following statement true for all sets A, B and C? If it is, give a proof. If it is not, provide a counterexample.

- (a) If $A \neq B$ and $B \neq C$, then $A \neq C$;
- (b) If $A \in B$ and $B \not\subseteq C$, then $A \notin C$;
- (c) If $A \subseteq B$ and $B \subseteq C$, then $C \not\subseteq A$;

Solution:

- (a) This statement is not true for all sets A, B and C. As a counterexample, consider $A = \emptyset, B = \{0\}$ and $C = \emptyset$. Then, clearly, $A \neq B$ and $B \neq C$, but A = C.
- (b) This statement is not true for all sets A, B and C. As a counterexample, consider $A = \emptyset$, $B = \{\emptyset, 0\}$ and $C = \{\emptyset\}$. Then, clearly, $A \in B$ and $B \not\subseteq C$, but $A \in C$.
- (c) This statement is true for all sets A, B and C. Assume that $A \subsetneq B$ and $B \subseteq C$. Since $A \gneqq B$, there exists $x \in B$, with $x \notin A$. Since $B \subseteq C$, $x \in C$ and $x \notin A$. Therefore $C \not\subseteq A$.

Problem 6 Show that, for a set A in a universe U, we have (A')' = A.

Solution: For all $x \in U$, we have

$$x \in (A')' \quad \text{iff} \quad x \notin A' \\ \text{iff} \quad x \in A.$$

Therefore (A')' and A contain exactly the same elements, i.e., (A')' = A.

Problem 7 Show that, for any sets A, B in a universe U, we have $(A \cup B)' = A' \cap B'$.

Solution: If $x \in (A \cup B)'$, then $x \notin A \cup B$, whence $x \notin A$ and $x \notin B$, showing that $x \in A'$ and $x \in B'$, i.e., $x \in A' \cap B'$. This proves that $(A \cup B)' \subseteq A' \cap B'$.

Conversely, if $x \in A' \cap B'$, then $x \in A'$ and $x \in B'$, whence $x \notin A$ and $x \notin B$, which gives that $x \notin A \cup B$, i.e., that $x \in (A \cup B)'$. This shows that $A' \cap B' \subseteq (A \cup B)'$.

These two parts taken together yield that $(A \cup B)' = A' \cap B'$.

Problem 8 Either prove or give a counterexample for the following statement: For all sets A, B, C in a universe $U, (A \setminus B) \setminus C = A \setminus (B \cup C)$.

Solution: Suppose that $x \in (A \setminus B) \setminus C$. Then $x \in A \setminus B$ and $x \notin C$. Therefore $x \in A$ and $x \notin B$ and $x \notin C$. The first and last two statements give, respectively, $x \in A$ and $x \notin B \cup C$. Thus, we obtain $x \in A \setminus (B \cup C)$. This proves that $(A \setminus B) \setminus C \subseteq A \setminus (B \cup C)$.

Suppose, conversely, that $x \in A \setminus (B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. Therefore, $x \in A$ and $x \notin B$ and $x \notin C$. The first two statements give $x \in A \setminus B$ and the third $x \notin C$. Therefore, we obtain $x \in (A \setminus B) \setminus C$. This proves that $A \setminus (B \cup C) \subseteq (A \setminus B) \setminus C$.

The previous two statements taken together imply that $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

Problem 9 Consider the following three syllogisms:

(a)	All S is M	(b)	Some M is not P	(c)	All M is P
	No M is P		No M is S		Some S is M
	\therefore Some S is P		\therefore No S is P		\therefore Some S is not P

For each of (a),(b) and (c) provide its mood, its figure and explain whether it is a valid syllogism under the modern convention regarding the empty class.

Solution:

- (a) The mood of this argument is EAI and it is of Figure 1. It is not a valid argument and the interpretation $S = M = P = \emptyset$ provides a counterexample.
- (b) The mood of this argument is OEE and it is of Figure 3. It is not a valid argument and the interpretation $S = P = \{0\}$ and $M = \{1\}$ provides a counterexample.
- (c) The mood of this argument is AIO and it is of Figure 1. It is not a valid argument and the interpretation $S = M = P = \{0\}$ provides a counterexample.

Problem 10 Consider the following arguments

ARGUMENT 1	ARGUMENT 2
$(A \cup C')' = 0$ (A'C)'(BC)' = 0 $\therefore (BC')' = 0$	$(A' \cup C' \cup D)' = 0$ AD = 0 BC' = 0 $\therefore AB = 0$

- (a) Use a Venn diagram to determine if each argument is correct.
- (b) If the argument is correct, then use both Boole's equational reasoning and Carroll's tree method to prove its correctness.

Solution:

- ARG. 1 This is not a valid argument. The following Venn diagram of Figure 1 provides a counterexample (i.e., take $U = A = B = C = \{0\}$):
- ARG. 2 The given argument has the equivalent form:

$$ACD' = 0$$
$$AD = 0$$
$$BC' = 0$$
$$\therefore AB = 0$$

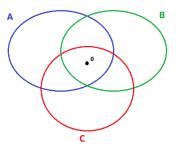


Figure 1: Venn Diagram for ARGUMENT 1

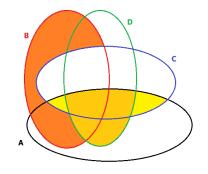


Figure 2: Venn Diagram for ARGUMENT 2

This is a valid argument as shown by the Venn diagram of Figure 2. The Boolean equational reasoning that yields the conclusion from the premises is

AB	=	AB1	(Intersection with Universe)
	=	$AB(C \cup C')$	(Union of C and C')
	=	$ABC \cup ABC'$	(Distributivity)
	=	$ABC1 \cup ABC'$	(Intersection with Universe)
	=	$ABC(D \cup D') \cup ABC'$	(Union of D and D')
	=	$ABCD \cup ABCD' \cup ABC'$	(Distrubutivity)
	=	$BC0\cup B0\cup A0$	(Premises)
	=	$0 \cup 0 \cup 0$	(Intersection with \emptyset)
	=	0	(Union).

Finally, Carroll's tree yielding the same conclusion is given in Figure 3

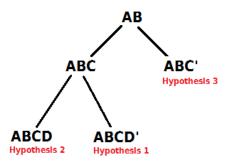


Figure 3: Carroll's Tree Diagram for ARGUMENT 2