
HOMEWORK 3 SOLUTIONS - MATH 300

INSTRUCTOR: George Voutsadakis

Problem 1 The questions of Problem 1 refer to the following combined truth table:

Line P Q R S F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1
2 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1
3 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0
4 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0

5 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0
6 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0
7 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0
8 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0

9 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0
10 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0
11 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0
12 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0

13 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0
14 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0
15 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0
16 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0

(a) Which of the formulas F1-F12 are truth equivalent?

(b) Which of the formulas F1-F12 are tautologies?

(c) Which of the formulas F1-F12 are contradictions?

(d) Determine if the following arguments are valid. If not, cite the number of a row of the truth
table that refutes the argument.

(i) F1, F5, F10 ∴ F8

(ii) F1, F3, F4, F5, F6, F7, F10 ∴ F8

(e) Determine if the following collections of formulas are satisfiable. If so, cite the number of a
row of the truth table that satisfies them.

(i) {F1, F5, F6}

(ii) {F3, F4, F6, F8}

(f) Find the disjunctive normal form of F1 (with respect to the variables P,Q,R, S).

(g) Find the conjunctive normal form of F10 (with respect to the variables P,Q,R, S).

Solution:

(a) The only formulas that have identical truth tables are F2, F7 and F12. So these are the only
truth equivalent formulas among the ones given.

(b) Formula F11 is the only tautology.

(c) Formula F9 is the only contradiction.



(d) The argument F1, F5, F10 ∴ F8 is not valid. The assignment in Line 13 of the table makes all
three hypotheses true and the conclusion false.

On the other hand the argument F1, F3, F4, F5, F6, F7, F10 ∴ F8 is a valid argument since the
set {F1, F3, F4, F5} is unsatisfiable.

(e) The collection {F1, F5, F6} is satisfiable, as witnessed by the assignment of Line 13 .

On the other hand, the collection {F3, F4, F6, F8} is unsatisfiable.

(f) The disjunctive normal form of F1 is

(P∧¬Q∧R∧S)∨(P ∧¬Q∧R∧¬S)∨(P∧¬Q∧¬R∧S)∨(P ∧¬Q∧¬R∧¬S)∨(¬P∧¬Q∧R∧S).

(g) The conjunctive normal form of F10 is

(P ∨Q ∨R ∨ ¬S) ∧ (P ∨ ¬Q ∨R ∨ ¬S) ∧ (P ∨ ¬Q ∨ ¬R ∨ ¬S).

�

Problem 2 Consider the following propositions:

A “is able to stir the hearts of men”
C “is clever”
S “is Shakespeare”
P “is a true poet”
N “understands human nature”
H “is the writer of Hamlet”.

Express the following as an argument in the propositional calculus and determine if it is valid, where
the universe of discourse is the class of all writers:

All writers who understand human nature are clever.
No writer is a true poet unless he can stir the hearts of men.
Shakespeare wrote Hamlet.
No writer who does not understand human nature can stir the hearts of men.
None but a true poet could have written Hamlet.
∴ Shakespeare is clever.

Solution: Taking into account the variables denoting the corresponding propositions, we translate
the given statements in the boxed argument as follows:

All writers who understand human nature are clever. N → C

No writer is a true poet unless he can stir the hearts of men. P → A

Shakespeare wrote Hamlet. S → H

No writer who does not understand human nature can stir the hearts of men. A → N

None but a true poet could have written Hamlet. H → P

∴ Shakespeare is clever. ∴ S → C

Assume now that all hypotheses are true. Then, if S is assigned the value true, by the 3rd statement,
H is also assigned the value true. Thus, by the 5th statement, P is also assigned the value true.
Hence, by the 2nd statement A is also assigned the value true. Thus, by the 4th statement N is
assigned the value true as well and, therefore, by the 1st statement, C is also assigned the value
true. This shows that S → C must be evaluated to true, provided that all hypotheses are evaluated
to true. Therefore, the given argument is indeed a valid argument. �



Problem 3 Determine if the following argument is a valid argument:

¬C ∧D

¬(¬B ∧ C ∧D)
¬(¬B ∨ (¬A ∧B)) ∧ ¬C ∧ ¬D
∴ A ∧ ¬B.

Solution: The argument is vacuously valid: If D is assigned the truth value true, then the 3rd
hypothesis is evaluated to false. On the other hand, if D is assigned the truth value false, then
the 1st hypothesis is evaluated to false. Thus, the set consisting of the three hypotheses is an
unsatisfiable set of formulas. �

Problem 4 Let S be an arbitrary infinite set of natural numbers, presented in binary notation
(e.g., 12 is presented as 1100). Prove that there is an infinite sequence of different binary numbers
b1, b2, . . ., such that each bi is a prefix of bi+1 and also a prefix of some element of S.

Solution: Suppose that the set S consists of the following natural numbers, thinking of them as
written in binary notation:

s1, s2, s3, . . . , sj , . . .

For every i = 1, 2, . . ., there are 2i−1 different binary strings of length i starting with digit 1. At
least one and as many as 2i−1 of those strings appear as prefixes of strings in S. Let ki ≥ 1 be the
smallest index, such that in the finite sequence s1, s2, . . . , ski all the different prefixes of length i

appearing in the sequence s1, s2, . . . are present.
We will show, using compactness, that there exists an infinite sequence of different binary

numbers b1, b2, . . . , bi, . . ., such that

• bi has i binary digits;

• each bi is a prefix of bi+1;

• each bi is a prefix of some element of S.

To prove this, we introduce an infinite doubly-indexed collection of propositional variables Pi,j ,
i, j = 1, 2, . . .. The intended meaning is that Pi,j is going to be assigned value 1 if bi is a prefix
of sj and value 0, otherwise. Then, we form the infinite set X of propositional formulas using the
propositional variables Pi,j, i, j = 1, 2, . . . by adding the following classes of formulas in X :

1. Pi,j → Pi−1,j , for all i = 2, 3, . . . , j = 1, 2, . . .; Formulas of this type mean that if bi is a prefix
of sj, then bi−1 will also be a prefix of sj;

2.
∨

{Pi,j : 1 ≤ j ≤ ki and sj has length at least i}, for all i = 1, 2, . . .; Formulas of this type

mean that bi is a prefix of at least one number from s1, . . . , ski in S (recall these are our only
possible choices for strings of length i);

3. ¬Pi,p ∨ ¬Pi,q, for all i = 1, 2, . . . and all 1 ≤ p < q ≤ ki, such that sp and sq do not have the
same prefix of length i; Formulas of this type mean that bi cannot be the prefix of two strings
that do not share the same prefix of length i.

Once we have settled on this set X of propositional formulas, we must show that it serves our
purposes. Namely, the following must be accomplished:

(a) It must be shown that every finite subset Y of X is satisfiable. Since every subset of a
satisfiable set of formulas is also satisfiable, it does not harm generality to assume that Y
consists of all formulas involving variables Pi,j, with i ≤ m, j ≤ ki, for some fixed natural
number m.



(b) By appealing to compactness, the previous proof will imply that X is satisfiable.

(c) The last step involves showing that the satisfiability of (the entire infinite set) X implies
the existence of a sequence b1, b2, . . . of binary numbers that satisfy the requirements of the
problem.

Proof of Item (a): Let m be the largest i, such that Pi,j appears in the finite set Y. Take bm to
be the prefix of skm (note this determines also all bi, for i < m, as the prefixes of length i of bm)
and define Pi,j to be 1 if bi is a prefix of sj of length i and 0, otherwise. By the construction of
the bi’s, for i ≤ m, the set of formulas of type 1 in Y are satisfied. Formulas of type 2 are also
satisfied, because, if bm is a prefix of the formula skm, then bi, for i < m is a prefix of length i of
some formula sj, with j ≤ km. Finally, formulas of type 3 are also satisfied by the assignment of
truth values to Pi,j . This finishes the proof of Item (a).
Proof of Item (c): We have now concluded that X is satisfiable. Assume that we have a satisfying
assignment e of truth values to the variables Pi,j . We will informally refer to Pi,j as been true or
false depending on the truth value that it has been assigned under the assignment e, satisfying X .
By the set of propositions of type 2, for every i, at least one of Pi,j with 1 ≤ j ≤ ki and sj of length
at least i, must be true. Moreover, by the propositions of type 2, if two of these Pi,j’s are true,
then they agree on prefixes of length i. Let bi be the unique prefix of the sj’s of length at least i

for which Pi,j is true. Then, for every i, bi is a prefix of bi+1 by the propositions of type 1, and
every bi is the prefix of some number in S, by formulas of type 2. �

Problem 5 (Generalization of the Erdős - De Bruijn Theorem) In this problem, the following
definition is needed:

A homomorphism f from a graph G to a graph H is a map f : G → H, such
that, if a and b are adjacent in G, then f(a) and f(b) are adjacent in H, i.e.,
such that f preserves the adjacency relation, or f preserves edges.

If H is a finite graph, prove that there is a homomorphism from G to H iff for every finite subgraph
G0 of G, there is a homomorphism from G0 to H.

(Caution: In graph theory, what we call here a subgraph is usually referred to as an induced

subgraph; In logic the usage accords with the concept of a substructure of an arbitrary first-
order structure.)

Solution: We use compactness to prove the statement. For all a ∈ G and all x ∈ H, we introduce
a variable Pax. The intuition is that Pax will have value 1 if vertex a ∈ G gets mapped to vertex
x ∈ H and 0, otherwise. Let S be the set of propositional formulas consisting of

1.
∨

{Pax : x ∈ H}, a ∈ G; Formulas of this type mean that each a ∈ G must be mapped to
some vertex in H;

2. ¬Pax ∨¬Pay, a ∈ G,x, y ∈ H,x 6= y; Formulas of this type ensure that each a ∈ G is mapped
to a unique vertex in H;

3.
∨

{(Pax∧Pby) : (x, y) an edge in H}, for a every edge (a, b) ∈ G; Formulas of this type ensure

that each pair (a, b) of vertices joined by an edge in G must be mapped to a pair (x, y) of
vertices in H that are joined by an edge.

The hypothesis asserts the existence of a homomorphism for every finite subgraph G0 of G to
H. This implies that every finite subset of S is satisfiable. By the Compactness Theorem (the
entire infinite set of formulas) S is satisfiable. A satisfying assignment of truth values to the Pax’s
translates directly to a graph homomorphism from G to H. �


