HOMEWORK 6 SOLUTIONS - MATH 300 INSTRUCTOR: George Voutsadakis

Problem 1 Consider the first-order language $\mathcal{L} = \{f, r\}$, where f is a ternary function symbol and r a binary relation symbol. Consider also the \mathcal{L} -structure $\mathbf{S} = (S, I)$, where $S = \{0, 1\}$ and Iconsists of the following interpretations of the function symbol f and the relation symbol r:

			$f^{\mathbf{S}}$			
1	1	1	0			
1	1	0	0			
1	0	1	1	$r^{\mathbf{S}}$	0	1
1	0	0	1	0	0 0	$\begin{array}{c} 1 \\ 0 \end{array}$
0	1	1	0	1	0	0
0	1	0	0			
0	0	1	0			
0	0	0	1			

Determine the truth of the following first-order sentences in S:

- (a) $\forall x(rxfxxx)$
- (b) $\forall x \exists y (rfxyxfxxx)$

Solution:

- (a) The sentence $\forall x(rxfxxx)$ is false in the structure **S**, since $r^{\mathbf{S}}(1, f^{\mathbf{S}}111)$ is equivalent to $r^{\mathbf{S}}(1, 0)$, which does not hold in **S**.
- (b) The sentence $\forall x \exists y (rfxyxfxxx)$ is false in the structure **S**, since, for x = 1, we have that both $r^{\mathbf{S}}(f^{\mathbf{S}}101, f^{\mathbf{S}}111)$ and $r^{\mathbf{S}}(f^{\mathbf{S}}111, f^{\mathbf{S}}111)$, which are equivalent to $r^{\mathbf{S}}(1, 0)$ and $r^{\mathbf{S}}(0, 0)$, respectively, are false in **S**.

Problem 2 Consider the first-order language $\mathcal{L} = \{f, r\}$, where f is a ternary function symbol and r a binary relation symbol. Consider also the \mathcal{L} -structure $\mathbf{S} = (S, I)$, where $S = \{0, 1, 2\}$ and I consists of the following interpretations of the function symbol f and the relation symbol r:

	$r^{\mathbf{S}}$			
$f^{\mathbf{S}}(a,b,c) = (a-b+c) \mod 3$	0	1	0	0
$f(a, b, c) = (a - b + c) \mod 5$	1	1	1	1
	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1	0	1

Determine the truth of the following first-order sentences in S:

- (a) $\forall x \exists y ((rfxyxy) \rightarrow (ryfxyx))$
- (b) $\forall x \exists y \forall z (rxfzyx)$

Solution:

(a) The sentence $\forall x \exists y ((rfxyxy) \rightarrow (ryfxyx))$ is true in **S**. In fact, for any $x = a \in S$, we may choose y = a, so that $r^{\mathbf{S}}(f^{\mathbf{S}}aaa, a) \rightarrow r^{\mathbf{S}}(a, f^{\mathbf{S}}aaa)$, which is equivalent to $r^{\mathbf{S}}(a, a) \rightarrow r^{\mathbf{S}}(a, a)$, is true in **S**;

- (b) The sentence $\forall x \exists y \forall z (rxfzyx)$ is false in **S**; we argue by contradiction. If the sentence is true in **S**, then it must hold for x = 0. Thus, there must exist some $y = b \in S$, such that, for all $z \in S$, $r^{\mathbf{S}}(0, f^{\mathbf{S}}zb0)$ is true in **S**. Now we argue by cases depending on the value of $b \in S$ that this is impossible:
 - If b = 0, then $r^{\mathbf{S}}(0, f^{\mathbf{S}}100)$ (equivalent to $r^{\mathbf{S}}(0, 1)$) is false;
 - If b = 1, then $r^{\mathbf{S}}(0, f^{\mathbf{S}}210)$ (equivalent to $r^{\mathbf{S}}(0, 1)$) is false;
 - If b = 2, then $r^{\mathbf{S}}(0, f^{\mathbf{S}}120)$ (equivalent to $r^{\mathbf{S}}(0, 2)$) is false.

So, for x = 0, there does not exist any $y \in S$, such that, for all $z \in S$, rxfzyx is true in **S**.

Problem 3 Consider the language $\mathcal{L} = \{+, \cdot, <\}$, where $+, \cdot$ are binary function symbols and < is a binary relation symbol. Let $x \leq y$ be an abbreviation for $(x < y) \lor (x \approx y)$. Use the skeleton method to determine whether each of the following \mathcal{L} -sentences has a one-element model. If yes, then exhibit that one-element model.

(a) $\forall x (\exists y (x \cdot y < x) \rightarrow \exists z ((y \cdot z < x) \land \neg (y \cdot x < z))) \rightarrow \exists x \forall y (x \cdot y < y)$

(b)
$$\forall x (\exists y (x \cdot y \leq x) \rightarrow \neg \exists y \forall z ((y + z < x \cdot y) \land \neg (y \cdot x \leq z))) \rightarrow \exists x \forall y (x + y < x \cdot y)$$

Solution:

(a) Consider first

$$\forall x (\exists y (x \cdot y < x) \rightarrow \exists z ((y \cdot z < x) \land \neg (y \cdot x < z))) \rightarrow \exists x \forall y (x \cdot y < y)$$

Start by removing all quantifiers and all terms:

$$((<) \to ((<) \land \neg(<))) \to (<).$$

Now replace < by a propositional letter P:

$$(P \to (P \land \neg P)) \to P.$$

This last propositional formula is satisfiable when P is assigned the truth value 1. Therefore, the following \mathcal{L} -structure is a one-element model for $\forall x (\exists y (x \cdot y < x) \rightarrow \exists z ((y \cdot z < x) \land \neg (y \cdot x < z))) \rightarrow \exists x \forall y (x \cdot y < y)$:

$$S = \{a\}, \quad a + {}^{\mathbf{S}}a = a, \quad a \cdot {}^{\mathbf{S}}a = a, \quad <^{\mathbf{S}} = \{(a, a)\}.$$

(b) Next, consider

$$\forall x (\exists y (x \cdot y \le x) \to \neg \exists y \forall z ((y + z < x \cdot y) \land \neg (y \cdot x \le z))) \to \exists x \forall y (x + y < x \cdot y).$$

Expand the abbreviations \leq :

$$\forall x (\exists y ((x \cdot y < x) \lor (x \cdot y \approx x)) \rightarrow \neg \exists y \forall z ((y + z < x \cdot y) \land \neg ((y \cdot x < z) \lor (y \cdot x \approx z)))) \rightarrow \exists x \forall y (x + y < x \cdot y).$$

Remove all quantifiers and all terms:

$$(((<) \lor (\approx)) \to \neg((<) \land \neg((<) \lor (\approx)))) \to (<).$$

Finally, replace all \approx by 1 and all < by a propositional variable P:

$$((P \lor 1) \to \neg (P \land \neg (P \lor 1))) \to P.$$

This formula is equivalent to $1 \to P$, which is satisfiable when P is assigned the truth value 1. Therefore, the following \mathcal{L} -structure is a one-element model for $\forall x (\exists y (x \cdot y < x) \to \exists z ((y \cdot z < x) \land \neg (y \cdot x < z))) \to \exists x \forall y (x \cdot y < y)$:

$$S = \{a\}, \quad a + {}^{\mathbf{S}}a = a, \quad a \cdot {}^{\mathbf{S}}a = a, \quad <^{\mathbf{S}} = \{(a, a)\}.$$

Problem 4 To show that two \mathcal{L} -sentences F and G are equivalent, we must either use some of our fundamental equivalences from first-order logic to transform one to the other, or we have to prove that they are true in exactly the same structures, i.e., that for every structure $\mathbf{S}, \mathbf{S} \models F$ iff $\mathbf{S} \models G$. On the other hand, to show that they are not equivalent, it suffices to find a single structure \mathbf{S} in which one of the two sentences is true and the other is false.

Determine if the following pairs of \mathcal{L} -sentences are equivalent, where $\mathcal{L} = \{f\}$, with f a unary function symbol:

- (a) $\forall x ((ffx \approx x) \land (fffx \approx x)) \text{ and } \forall x (fx \approx x);$
- (b) $\forall x \forall y ((fx \approx fy) \rightarrow (x \approx y)) \text{ and } \forall y \exists x (fx \approx y).$

Solution:

(a) The sentences $\forall x((ffx \approx x) \land (fffx \approx x))$ and $\forall x(fx \approx x)$ are equivalent; To prove this, assume that $\mathbf{S} = (S, I)$ is an arbitrary \mathcal{L} -structure. We show that, for all $a \in S$,

$$(f^{\mathbf{S}}f^{\mathbf{S}}a = a \text{ and } f^{\mathbf{S}}f^{\mathbf{S}}f^{\mathbf{S}}a = a) \text{ iff } f^{\mathbf{S}}a = a$$

The left-to-right implication is shown by

$$f^{\mathbf{S}}a = f^{\mathbf{S}}f^{\mathbf{S}}f^{\mathbf{S}}a$$
 (by hypothesis)
= a (by hypothesis)

The right-to left-implication is shown by

$$f^{\mathbf{S}}f^{\mathbf{S}}a = f^{\mathbf{S}}a = a$$
 (both equations by hypothesis)

and

 $f^{\mathbf{S}}f^{\mathbf{S}}f^{\mathbf{S}}a = f^{\mathbf{S}}f^{\mathbf{S}}a = f^{\mathbf{S}}a = a$ (all equations by hypothesis).

(b) The sentences $\forall x \forall y ((fx \approx fy) \rightarrow (x \approx y))$ and $\forall y \exists x (fx \approx y)$ are not equivalent; To show this consider the structure $\mathbf{S} = (S, f^{\mathbf{S}})$, where $S = \mathbb{N} = \{0, 1, 2, ...\}$ and $f^{\mathbf{S}}(n) = n + 1$, for all $n \in \mathbb{N}$.

Clearly, for all $n, m \in \mathbb{N}$, if $f^{\mathbf{S}}(n) = f^{\mathbf{S}}(m)$, then n + 1 = m + 1, whence n = m. This shows that $\forall x \forall y ((fx \approx fy) \rightarrow (x \approx y))$ is true in **S**.

On the other hand, for y = 0, there does not exist $n \in \mathbb{N}$, such that $0 = n + 1 = f^{\mathbf{S}}(n)$. Thus, $\forall y \exists x (fx \approx y)$ is not true in **S**. Therefore, $\forall x \forall y ((fx \approx fy) \rightarrow (x \approx y))$ and $\forall y \exists x (fx \approx y)$ are not true in exactly the same first-order structures and, hence, are not equivalent.

Problem 5 To show that two \mathcal{L} -formulas F(x) and G(x), with a free variable x are equivalent, we must either use some of our fundamental equivalences from first-order logic to transform one to the other, or we have to prove that they define exactly the same unary relations in all \mathcal{L} -structures, i.e., that for every structure \mathbf{S} and every $a \in S$, $F^{\mathbf{S}}(a)$ holds iff $G^{\mathbf{S}}(a)$ holds. On the other hand, to show that they are not equivalent, it suffices to find a single structure \mathbf{S} and a single element $a \in S$, such that one of $F^{\mathbf{S}}(a)$, $G^{\mathbf{S}}(a)$ is true and the other is false.

Determine if the following pairs of formulas are equivalent:

- (a) $\forall y(rxy)$ and $\exists y(rxy)$, where $\mathcal{L} = \{r\}$, r a binary relation symbol;
- (b) $\exists y(r_1fy \wedge r_2y \wedge (x \approx fy))$ and $\exists y \exists z(r_1y \wedge r_2z \wedge (x \approx fy) \wedge (x \approx fz))$, where $\mathcal{L} = \{f, r_1, r_2\}$, with f a unary function symbol and r_1, r_2 unary relation symbols.

Solution:

(a) The formulas $F(x) = \forall y(rxy)$ and $G(x) = \exists y(rxy)$ are not equivalent: Consider the first-order \mathcal{L} -structure $\mathbf{S} = (S, I)$, such that

$$S = \{a, b\}, \quad r^{\mathbf{S}} = \{(a, a)\}.$$

Then, since there does not exist any $x \in S$, such that, for all y, rxy holds in \mathbf{S} , we have $F^{\mathbf{S}} = \emptyset$. On the other hand, since $r^{\mathbf{S}}(a, a)$ holds, x = a satisfies G(x), whence $G^{\mathbf{S}} = \{a\}$. Since in $\mathbf{S}, F^{\mathbf{S}} \neq G^{\mathbf{S}}, F(x)$ and G(x) are not equivalent formulas.

(b) The formulas $F(x) = \exists y (r_1 f y \wedge r_2 y \wedge (x \approx f y))$ and $G(x) = \exists y \exists z (r_1 y \wedge r_2 z \wedge (x \approx f y) \wedge (x \approx f z))$ are not equivalent formulas. Consider the first-order \mathcal{L} -structure $\mathbf{S} = (S, I)$, such that

$$S = \{a, b\}, \quad \frac{f^{\mathbf{S}}}{a \ b}, \quad r_1^{\mathbf{S}} = \{a\}, \quad r_2^{\mathbf{S}} = \{b\}.$$

We will show that $F^{\mathbf{S}}(a)$ holds, whereas $G^{\mathbf{S}}(a)$ does not hold.

Since $r_1^{\mathbf{S}}(f^{\mathbf{S}}b)$ and $r_2^{\mathbf{S}}(b)$ and $a = f^{\mathbf{S}}b$ all hold, we have that $\exists y(r_1fy \wedge r_2y \wedge (x \approx fy))$ holds at x = a in \mathbf{S} with witness y = b.

On the other hand, for x = a, since the only element y in **S**, such that $f^{\mathbf{S}}y = a$ is b, for $G^{\mathbf{S}}(a)$ to hold, we must have that the witness for the variable y in G(x) at x = a must be y = b. But $r_1^{\mathbf{S}}(b)$ does not hold. Thus, there is no element y bor which both statements $r_1^{\mathbf{S}}y$, $a = f^{\mathbf{S}}y$ are true in **S**. Hence, $G^{\mathbf{S}}(a)$ is not true.

Since $F^{\mathbf{S}}(a)$ holds but $G^{\mathbf{S}}(a)$ does not hold, F(x) and G(x) are not equivalent formulas.

Problem 6 Put the following formulas in the language of graphs into prenex normal form:

- (a) $(\forall y(\neg(y \approx z) \lor \forall y(y \approx z))) \lor (ryz)$
- (b) $(z \approx x) \lor ((\forall x (\neg \forall z (rxz))) \to (y \approx z))$
- (c) $(x \approx y) \rightarrow \exists y(((y \approx z) \rightarrow (\exists z(y \approx z))) \land (y \approx z))$

Solution:

(a) Consider the formula $(\forall y(\neg(y \approx z) \lor \forall y(y \approx z))) \lor (ryz)$ and apply the following steps:

Move	Resulting Formula
Original Formula	$ \begin{array}{l} (\forall y(\neg(y\approx z)\lor\forall y(y\approx z)))\lor(ryz)\\ (\forall y(\neg(y\approx z)\lor\forall w(w\approx z)))\lor(ryz)\\ (\forall u(\neg(u\approx z)\lor\forall w(w\approx z)))\lor(ryz)\\ \forall u((\neg(u\approx z)\lor\forall w(w\approx z)))\lor(ryz)) \end{array} $
Rename Inside y	$(\forall y(\neg(y\approx z)\lor\forall w(w\approx z)))\lor(ryz)$
Rename Remaining y	$(\forall u(\neg(u\approx z)\lor\forall w(w\approx z)))\lor(ryz)$
Expand Scope of $\forall u$	$\forall u((\neg(u\approx z)\lor\forall w(w\approx z))\lor(ryz))$
Expand Scope of $\forall w$	$\forall u \forall w ((\neg (u \approx z) \lor (w \approx z)) \lor (ryz));$

The last formula is in prenex normal form.

(b) For the formula $(z \approx x) \lor ((\forall x (\neg \forall z (rxz))) \to (y \approx z))$ we have

Move	Resulting Formula
Original Formula	$(z\approx x)\vee ((\forall x(\neg\forall z(rxz)))\rightarrow (y\approx z))$
Rename Inside z	$(z\approx x)\vee ((\forall x(\neg\forall w(rxw)))\rightarrow (y\approx z))$
Rename Inside x	$(z\approx x)\vee ((\forall u(\neg\forall w(ruw)))\rightarrow (y\approx z))$
Replace \rightarrow	$(z \approx x) \lor (\neg (\forall u (\neg \forall w (ruw))) \lor (y \approx z))$
Pull $\forall u$	$(z \approx x) \lor (\exists u(\neg(\neg \forall w(ruw))) \lor (y \approx z))$
Double Negation	$(z\approx x)\vee (\exists u(\forall w(ruw))\vee (y\approx z))$
Exapand Scope of $\exists u$	$\exists u((z\approx x)\vee(\forall w(ruw)\vee(y\approx z))$
Exapand Scope of $\forall w$	$\exists u \forall w ((z \approx x) \lor ((ruw) \lor (y \approx z)))$

The last formula is in prenex normal form.

(c) Finally, consider $(x \approx y) \rightarrow \exists y(((y \approx z) \rightarrow (\exists z(y \approx z))) \land (y \approx z)))$. We have

Move	Resulting Formula
Original Formula	$ \begin{array}{c} (x \approx y) \to \exists y (((y \approx z) \to (\exists z(y \approx z))) \land (y \approx z)) \\ (x \approx y) \to \exists y (((y \approx z) \to (\exists w(y \approx w))) \land (y \approx z)) \\ (x \approx y) \to \exists u (((u \approx z) \to (\exists w(u \approx w))) \land (u \approx z)) \\ \neg (x \approx y) \lor \exists u ((\neg (u \approx z) \lor (\exists w(u \approx w))) \land (u \approx z)) \end{array} $
Rename Inside z	$(x\approx y)\rightarrow \exists y(((y\approx z)\rightarrow (\exists w(y\approx w)))\wedge (y\approx z))$
Rename Inside y	$(x\approx y)\rightarrow \exists u(((u\approx z)\rightarrow (\exists w(u\approx w)))\wedge (u\approx z))$
Replace the $\rightarrow s$	$\neg(x\approx y) \lor \exists u((\neg(u\approx z) \lor (\exists w(u\approx w))) \land (u\approx z))$
Expand Scope of $\exists w \text{ Twice}$	$\neg(x\approx y) \lor \exists u \exists w ((\neg(u\approx z) \lor (u\approx w)) \land (u\approx z))$
Expand Scope of $\exists u$ and of $\exists w$	$\exists u \exists w (\neg (x \approx y) \lor ((\neg (u \approx z) \lor (u \approx w)) \land (u \approx z)))$

The last formula is in prenex normal form.

Problem 7 Find a counterexample for the following arguments:

(a) (Here $\mathcal{L} = \{r_1, r_2, r_3\}$, with r_1, r_2, r_3 unary relation symbols.)

 $\forall x(r_1x \to (r_2x \to r_3x)) \\ \therefore \forall x((r_1x \to r_2x) \to r_3x)$

(b) (Here $\mathcal{L} = \{r\}$, with r a binary relation symbol.)

$$\begin{aligned} \forall x \exists y (rxy) \\ \forall y \exists x (rxy) \\ \therefore \quad \forall x \forall y (\neg (x \approx y) \rightarrow (rxy)) \end{aligned}$$

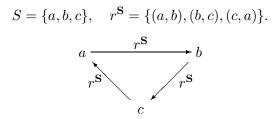
Solution:

(a) Consider the \mathcal{L} -structure $\mathbf{S} = (S, I)$, where

$$S = \{a\}, \quad r_1^{\mathbf{S}} = \emptyset, \quad r_2^{\mathbf{S}} = \{a\}, \quad r_3^{\mathbf{S}} = \emptyset.$$

Then, it is true in **S** that $\forall x(r_1x \to (r_2x \to r_3x))$, since $r_1^{\mathbf{S}}a \to (r_2^{\mathbf{S}}a \to r_3^{\mathbf{S}}a)$ is a true statement. On the other hand, it is false in **S** that $\forall x((r_1x \to r_2x) \to r_3x)$, since $(r_1^{\mathbf{S}}a \to r_2^{\mathbf{S}}a) \to r_3^{\mathbf{S}}a$ is a false statement.

(b) Consider the \mathcal{L} -structure $\mathbf{S} = (S, I)$, such that



Then, clearly, both $\forall x \exists y(rxy)$ (saying that "for every vertex, there exists an outgoing edge") and $\forall y \exists x(rxy)$ (saying that "for every vertex, there exists an incoming edge") are true in **S**, whereas $\forall x \forall y (\neg (x \approx y) \rightarrow (rxy))$ is not true in **S**, as, for instance $b \neq a \rightarrow r^{\mathbf{S}}(b, a)$ is a false statement. Therefore, the given argument is not a valid argument.

Problem 8 Skolemize the following sentences:

- (a) $\forall x \exists y (x < y)$
- (b) $\exists x \forall y (x < y)$

(c) $\forall x \forall y ((rxy) \rightarrow \exists z ((rxz) \land (rzy)))$

Solution: In this solution, we write Sk(F) to denote the Skolemization of a sentence F.

(a) To Skolemize $\forall x \exists y (x < y)$, which is already in prenex normal form, we introduce a fresh unary function symbol f to express the dependency of y on x:

$$\mathsf{Sk} \left(\forall x \exists y (x < y) \right) \equiv \forall x (x < f(x)).$$

(b) To Skolemize $\exists x \forall y (x < y)$, which is already in prenex normal form, we introduce a fresh constant symbol c as a witness to the existing x:

$$\mathsf{Sk} \left(\exists x \forall y (x < y) \right) \equiv \forall y (c < y).$$

(c) To Skolemize $\forall x \forall y ((rxy) \rightarrow \exists z ((rxz) \land (rzy)))$, we first convert it to prenex normal form

Move	Resulting Formula
Original Formula	$\forall x \forall y ((rxy) \to \exists z ((rxz) \land (rzy)))$
Replace the \rightarrow	$\forall x \forall y (\neg (rxy) \lor \exists z ((rxz) \land (rzy)))$
Expand Scope of $\exists z$	$\forall x \forall y \exists z (\neg (rxy) \lor ((rxz) \land (rzy))).$

Next, we introduce a fresh binary function symbol g to express the dependency of z on x and y:

$$\mathsf{Sk}\,(\forall x\forall y((rxy) \to \exists z((rxz) \land (rzy)))) \equiv \forall x\forall y(\neg(rxy) \lor ((rxgxy) \land (rgxyy))).$$